| % !TEX root = main.tex |
| |
| \chapter{Enumerations with symmetries} |
| \section{Group actions} |
| |
| \begin{defi} |
| Let $X$ be a set. We say \underline{$G$ acts on $X$} if for all $\sigma \in G$ $\exists$ a map $X \to X$ such that: |
| \[ \sigma(\tau(x)) = (\sigma \tau)(x), \quad \forall x \in X, \quad \forall \sigma, \tau \in G, \] |
| \[ \text{id}(x) = x. \] |
| \end{defi} |
| |
| \begin{defi} |
| For $x \in X$, we define the \underline{stabliser subgroup}: |
| \[ G_x = \{ \sigma \in G : \sigma(x) = x \}. \] |
| \end{defi} |
| |
| \begin{lema} |
| If $G$ acts transitively on $X$, then $|G_x| \cdot |X| = |G|$. |
| \end{lema} |
| |
| \section{Group action on functions} |
| |
| \begin{defi} |
| Suppose $G$ acts on $X$. Let $C^x$ denote a set of functions $f: X \to C$ where $C$ is a finite set of colors. For $\sigma \in G$, and $f \in C^X$, we define $\sigma(f) \in C^X$ by: |
| \[ \sigma(f)(x) := f(\sigma^{-1}(x)). \] |
| \end{defi} |
| |
| \section{The cycle-index polynomial} |
| Let $G$ act on $X$, a set of size $n$. For each $\sigma \in G$, $\sigma$ has a cyclic decomposition in its action on $X$ (since its action is a permutation on $X$). |
| |
| \begin{defi} |
| Let \[ \begin{cases} |
| C_i^X(\sigma) = \# \; i\text{-cycles in the cyclic decomposition of } \sigma \text{ acting on } X, \\ |
| C^X(\sigma) = \# \; \text{cycles in the cyclic decomposition of } \sigma \text{ acting on } X = \sum_i C_i^X(\sigma). |
| \end{cases} \] |
| |
| The \underline{cycle-index polynomial} for the action is: |
| \[ Z_G^X (X_1, \ldots, X_n) = \frac{1}{|G|} \sum_{\sigma \in G} \prod_{i = 1}^n X_i^{C_i^X(\sigma)}. \] |
| \end{defi} |
| |
| \begin{teo}[Polya's theorem] |
| Suppose $G$ acts on $X$ and $C$ is a set of $r$ colors. The number of orbits of $G$ acting on $C^X$ (i.e. the number of $r$-colorings of $X$ distinct under $G$) is: |
| \[ Z_G^X(r, \ldots, r) = \frac{1}{|G|} \sum_{\sigma \in G} r^{C^X(\sigma)}. \] |
| \end{teo} |
| |
| \section{General version of Polya's theorem} |
| Let $X$ be a set, let $C$ be a set of colors, and let $f: X \to C$ be a function. To each color $c_i \in C$, we associate an indeterminate $t_i$. |
| |
| Let $m_i(f) := \# \; \text{elements of } X \text{ that } f \text{ maps to the } i\text{-th color}$. |
| |
| Then, we define a function $w: C^X \to \z[t_1, \ldots, t_k]$ by: |
| \[ w(f) := \prod_{i = 1}^r t_i^{m_i(f)} = \prod_{x \in X} h(f(x)), \] |
| where $h$ maps the $i$-th color to $t_i$. |
| |
| \begin{teo}[General version of Polya] |
| Suppose that $G$ acts on $X$ and let $C$ be a set of $r$ colors. Let $R$ be a set of representatives of the orbits of the action $G$ on $C^X$. Then: |
| \[ Z_G(t_1 + \cdots + t_r, \ldots, t_1^n + \cdots + t_r^n) = \sum_{f \in R} w(f). \] |
| \end{teo} |
| |
| \begin{obs} |
| The coefficient of $t_1^{k_1} \ldots t_r^{k_r}$ is: |
| \[ \# \; \text{of distinct } r\text{-colorings with } \left\{\begin{array}{ccc} |
| k_1 & \text{colors} & c_1, \\ |
| \vdots & & \vdots \\ |
| k_r & \text{colors} & c_r. |
| \end{array}\right. \] |
| \end{obs} |