Adrià Vilanova MartÃnez | 8e1c8c3 | 2022-01-09 17:04:39 +0100 | [diff] [blame] | 1 | % !TEX root = main.tex |
| 2 | |
| 3 | \chapter{Enumerations with symmetries} |
| 4 | \section{Group actions} |
| 5 | |
| 6 | \begin{defi} |
| 7 | Let $X$ be a set. We say \underline{$G$ acts on $X$} if for all $\sigma \in G$ $\exists$ a map $X \to X$ such that: |
| 8 | \[ \sigma(\tau(x)) = (\sigma \tau)(x), \quad \forall x \in X, \quad \forall \sigma, \tau \in G, \] |
| 9 | \[ \text{id}(x) = x. \] |
| 10 | \end{defi} |
| 11 | |
| 12 | \begin{defi} |
| 13 | For $x \in X$, we define the \underline{stabliser subgroup}: |
| 14 | \[ G_x = \{ \sigma \in G : \sigma(x) = x \}. \] |
| 15 | \end{defi} |
| 16 | |
| 17 | \begin{lema} |
| 18 | If $G$ acts transitively on $X$, then $|G_x| \cdot |X| = |G|$. |
| 19 | \end{lema} |
| 20 | |
| 21 | \section{Group action on functions} |
| 22 | |
| 23 | \begin{defi} |
| 24 | Suppose $G$ acts on $X$. Let $C^x$ denote a set of functions $f: X \to C$ where $C$ is a finite set of colors. For $\sigma \in G$, and $f \in C^X$, we define $\sigma(f) \in C^X$ by: |
| 25 | \[ \sigma(f)(x) := f(\sigma^{-1}(x)). \] |
| 26 | \end{defi} |
| 27 | |
| 28 | \section{The cycle-index polynomial} |
| 29 | Let $G$ act on $X$, a set of size $n$. For each $\sigma \in G$, $\sigma$ has a cyclic decomposition in its action on $X$ (since its action is a permutation on $X$). |
| 30 | |
| 31 | \begin{defi} |
| 32 | Let \[ \begin{cases} |
| 33 | C_i^X(\sigma) = \# \; i\text{-cycles in the cyclic decomposition of } \sigma \text{ acting on } X, \\ |
| 34 | C^X(\sigma) = \# \; \text{cycles in the cyclic decomposition of } \sigma \text{ acting on } X = \sum_i C_i^X(\sigma). |
| 35 | \end{cases} \] |
| 36 | |
| 37 | The \underline{cycle-index polynomial} for the action is: |
| 38 | \[ Z_G^X (X_1, \ldots, X_n) = \frac{1}{|G|} \sum_{\sigma \in G} \prod_{i = 1}^n X_i^{C_i^X(\sigma)}. \] |
| 39 | \end{defi} |
| 40 | |
| 41 | \begin{teo}[Polya's theorem] |
| 42 | Suppose $G$ acts on $X$ and $C$ is a set of $r$ colors. The number of orbits of $G$ acting on $C^X$ (i.e. the number of $r$-colorings of $X$ distinct under $G$) is: |
| 43 | \[ Z_G^X(r, \ldots, r) = \frac{1}{|G|} \sum_{\sigma \in G} r^{C^X(\sigma)}. \] |
| 44 | \end{teo} |
| 45 | |
| 46 | \section{General version of Polya's theorem} |
| 47 | Let $X$ be a set, let $C$ be a set of colors, and let $f: X \to C$ be a function. To each color $c_i \in C$, we associate an indeterminate $t_i$. |
| 48 | |
| 49 | Let $m_i(f) := \# \; \text{elements of } X \text{ that } f \text{ maps to the } i\text{-th color}$. |
| 50 | |
| 51 | Then, we define a function $w: C^X \to \z[t_1, \ldots, t_k]$ by: |
| 52 | \[ w(f) := \prod_{i = 1}^r t_i^{m_i(f)} = \prod_{x \in X} h(f(x)), \] |
| 53 | where $h$ maps the $i$-th color to $t_i$. |
| 54 | |
| 55 | \begin{teo}[General version of Polya] |
| 56 | Suppose that $G$ acts on $X$ and let $C$ be a set of $r$ colors. Let $R$ be a set of representatives of the orbits of the action $G$ on $C^X$. Then: |
| 57 | \[ Z_G(t_1 + \cdots + t_r, \ldots, t_1^n + \cdots + t_r^n) = \sum_{f \in R} w(f). \] |
| 58 | \end{teo} |
| 59 | |
| 60 | \begin{obs} |
| 61 | The coefficient of $t_1^{k_1} \ldots t_r^{k_r}$ is: |
| 62 | \[ \# \; \text{of distinct } r\text{-colorings with } \left\{\begin{array}{ccc} |
| 63 | k_1 & \text{colors} & c_1, \\ |
| 64 | \vdots & & \vdots \\ |
| 65 | k_r & \text{colors} & c_r. |
| 66 | \end{array}\right. \] |
| 67 | \end{obs} |