/* | |
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined | |
* in FIPS PUB 180-1 | |
* Version 2.1a Copyright Paul Johnston 2000 - 2002. | |
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet | |
* Distributed under the BSD License | |
* See http://pajhome.org.uk/crypt/md5 for details. | |
*/ | |
/* | |
* Configurable variables. You may need to tweak these to be compatible with | |
* the server-side, but the defaults work in most cases. | |
*/ | |
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ | |
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ | |
var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ | |
/* | |
* These are the functions you'll usually want to call | |
* They take string arguments and return either hex or base-64 encoded strings | |
*/ | |
function hex_sha1(s){return binb2hex(core_sha1(str2binb(s),s.length * chrsz));} | |
function b64_sha1(s){return binb2b64(core_sha1(str2binb(s),s.length * chrsz));} | |
function str_sha1(s){return binb2str(core_sha1(str2binb(s),s.length * chrsz));} | |
function hex_hmac_sha1(key, data){ return binb2hex(core_hmac_sha1(key, data));} | |
function b64_hmac_sha1(key, data){ return binb2b64(core_hmac_sha1(key, data));} | |
function str_hmac_sha1(key, data){ return binb2str(core_hmac_sha1(key, data));} | |
/* | |
* Perform a simple self-test to see if the VM is working | |
*/ | |
function sha1_vm_test() | |
{ | |
return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d"; | |
} | |
/* | |
* Calculate the SHA-1 of an array of big-endian words, and a bit length | |
*/ | |
function core_sha1(x, len) | |
{ | |
/* append padding */ | |
x[len >> 5] |= 0x80 << (24 - len % 32); | |
x[((len + 64 >> 9) << 4) + 15] = len; | |
var w = Array(80); | |
var a = 1732584193; | |
var b = -271733879; | |
var c = -1732584194; | |
var d = 271733878; | |
var e = -1009589776; | |
for(var i = 0; i < x.length; i += 16) | |
{ | |
var olda = a; | |
var oldb = b; | |
var oldc = c; | |
var oldd = d; | |
var olde = e; | |
for(var j = 0; j < 80; j++) | |
{ | |
if(j < 16) w[j] = x[i + j]; | |
else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); | |
var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), | |
safe_add(safe_add(e, w[j]), sha1_kt(j))); | |
e = d; | |
d = c; | |
c = rol(b, 30); | |
b = a; | |
a = t; | |
} | |
a = safe_add(a, olda); | |
b = safe_add(b, oldb); | |
c = safe_add(c, oldc); | |
d = safe_add(d, oldd); | |
e = safe_add(e, olde); | |
} | |
return Array(a, b, c, d, e); | |
} | |
/* | |
* Perform the appropriate triplet combination function for the current | |
* iteration | |
*/ | |
function sha1_ft(t, b, c, d) | |
{ | |
if(t < 20) return (b & c) | ((~b) & d); | |
if(t < 40) return b ^ c ^ d; | |
if(t < 60) return (b & c) | (b & d) | (c & d); | |
return b ^ c ^ d; | |
} | |
/* | |
* Determine the appropriate additive constant for the current iteration | |
*/ | |
function sha1_kt(t) | |
{ | |
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : | |
(t < 60) ? -1894007588 : -899497514; | |
} | |
/* | |
* Calculate the HMAC-SHA1 of a key and some data | |
*/ | |
function core_hmac_sha1(key, data) | |
{ | |
var bkey = str2binb(key); | |
if(bkey.length > 16) bkey = core_sha1(bkey, key.length * chrsz); | |
var ipad = Array(16), opad = Array(16); | |
for(var i = 0; i < 16; i++) | |
{ | |
ipad[i] = bkey[i] ^ 0x36363636; | |
opad[i] = bkey[i] ^ 0x5C5C5C5C; | |
} | |
var hash = core_sha1(ipad.concat(str2binb(data)), 512 + data.length * chrsz); | |
return core_sha1(opad.concat(hash), 512 + 160); | |
} | |
/* | |
* Add integers, wrapping at 2^32. This uses 16-bit operations internally | |
* to work around bugs in some JS interpreters. | |
*/ | |
function safe_add(x, y) | |
{ | |
var lsw = (x & 0xFFFF) + (y & 0xFFFF); | |
var msw = (x >> 16) + (y >> 16) + (lsw >> 16); | |
return (msw << 16) | (lsw & 0xFFFF); | |
} | |
/* | |
* Bitwise rotate a 32-bit number to the left. | |
*/ | |
function rol(num, cnt) | |
{ | |
return (num << cnt) | (num >>> (32 - cnt)); | |
} | |
/* | |
* Convert an 8-bit or 16-bit string to an array of big-endian words | |
* In 8-bit function, characters >255 have their hi-byte silently ignored. | |
*/ | |
function str2binb(str) | |
{ | |
var bin = Array(); | |
var mask = (1 << chrsz) - 1; | |
for(var i = 0; i < str.length * chrsz; i += chrsz) | |
bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (32 - chrsz - i%32); | |
return bin; | |
} | |
/* | |
* Convert an array of big-endian words to a string | |
*/ | |
function binb2str(bin) | |
{ | |
var str = ""; | |
var mask = (1 << chrsz) - 1; | |
for(var i = 0; i < bin.length * 32; i += chrsz) | |
str += String.fromCharCode((bin[i>>5] >>> (32 - chrsz - i%32)) & mask); | |
return str; | |
} | |
/* | |
* Convert an array of big-endian words to a hex string. | |
*/ | |
function binb2hex(binarray) | |
{ | |
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; | |
var str = ""; | |
for(var i = 0; i < binarray.length * 4; i++) | |
{ | |
str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + | |
hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF); | |
} | |
return str; | |
} | |
/* | |
* Convert an array of big-endian words to a base-64 string | |
*/ | |
function binb2b64(binarray) | |
{ | |
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
var str = ""; | |
for(var i = 0; i < binarray.length * 4; i += 3) | |
{ | |
var triplet = (((binarray[i >> 2] >> 8 * (3 - i %4)) & 0xFF) << 16) | |
| (((binarray[i+1 >> 2] >> 8 * (3 - (i+1)%4)) & 0xFF) << 8 ) | |
| ((binarray[i+2 >> 2] >> 8 * (3 - (i+2)%4)) & 0xFF); | |
for(var j = 0; j < 4; j++) | |
{ | |
if(i * 8 + j * 6 > binarray.length * 32) str += b64pad; | |
else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F); | |
} | |
} | |
return str; | |
} |