| { |
| "cells": [ |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "This notebook is intended to show the process for going from \n", |
| "a database connection to two files the first associating an issue\n", |
| "to its components and the second to assocating an issue to its \n", |
| "comments. These files can then be used a machine learning pipeline\n", |
| "that will apply cleaning, vectorization of the text and building models." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "%pylab inline" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "from __future__ import print_function\n", |
| "from __future__ import division" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "import pandas as pd\n", |
| "from bs4 import BeautifulSoup\n", |
| "from collections import defaultdict\n", |
| "import pickle\n", |
| "import MySQLdb as mdb" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "connection = mdb.connect(host='', user='', db='monorail')\n", |
| "cursor = connection.cursor()" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "def table_to_dataframe(name, connection):\n", |
| " return pd.read_sql(\"SELECT * FROM {};\".format(name) , con=connection)" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "issue = table_to_dataframe('Issue', connection)\n", |
| "comment = table_to_dataframe('Comment', connection)\n", |
| "issue_component = table_to_dataframe('Issue2Component', connection)" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "issue.rename(columns={'id':'issue_id'}, inplace=True)\n", |
| "chrome_issue = issue[issue['project_id'] == 16].copy()\n", |
| "chrome_issue_id_set = set(chrome_issue['issue_id'])" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "### Associate an issue withs its components" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "components_by_issue = defaultdict(list)\n", |
| "i = 0\n", |
| "for index, row in issue_component.iterrows():\n", |
| " if row['issue_id'] in chrome_issue_id_set:\n", |
| " components_by_issue[row['issue_id']].append(row['component_id'])\n", |
| " if i % 100000 == 0:\n", |
| " print(i)\n", |
| " i += 1\n", |
| "\n", |
| "chrome_issue['components'] = chrome_issue['issue_id'].apply(lambda i_id: components_by_issue[i_id])" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "### Associate an issue withs its comments" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "comments_by_issue = defaultdict(list)\n", |
| "i = 0\n", |
| "for index, row in chrome_comment.iterrows():\n", |
| " comments_by_issue[row[\"issue_id\"]].append((index, row.created))\n", |
| " if i % 1000000 == 0:\n", |
| " print(i)\n", |
| " i += 1\n", |
| "\n", |
| "chrome_issue[\"comments\"] = chrome_issue[\"issue_id\"].apply(lambda i_id: \n", |
| " [tup[0] for tup \n", |
| " in sorted(comments_by_issue[i_id], \n", |
| " key=lambda x: x[1])])" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "### Only work with closed issues for training" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "closed_chrome_issues = chrome_issue[chrome_issue[\"closed\"] > 0]" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "### Subsample the data (faster to run experiments)" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "num_issues = len(closed_chrome_issues)" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "issue_subset = closed_chrome_issues.sample(int(num_issues * 0.05))" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "### Very light cleaning of text (removing markup)." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "comment_index_to_text = defaultdict(unicode)\n", |
| "\n", |
| "i = 0\n", |
| "for index, row in issue_subset.iterrows():\n", |
| " for num, comment_id in enumerate(row['comments']):\n", |
| " text = BeautifulSoup(comment.loc[comment_id]['content']).get_text().strip().lower()\n", |
| " comment_index_to_text[comment_id] = text\n", |
| " \n", |
| " if i % 10000 == 0:\n", |
| " print(i)\n", |
| " i += 1" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "issue_subset.to_pickle('subset_issue.pkl')" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "pickle.dump(comment_index_to_text, open('comment_text.pkl', 'w'))" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [] |
| } |
| ], |
| "metadata": { |
| "kernelspec": { |
| "display_name": "Python 2", |
| "language": "python", |
| "name": "python2" |
| }, |
| "language_info": { |
| "codemirror_mode": { |
| "name": "ipython", |
| "version": 2 |
| }, |
| "file_extension": ".py", |
| "mimetype": "text/x-python", |
| "name": "python", |
| "nbconvert_exporter": "python", |
| "pygments_lexer": "ipython2", |
| "version": "2.7.6" |
| } |
| }, |
| "nbformat": 4, |
| "nbformat_minor": 0 |
| } |