| # Copyright 2018 The Chromium Authors. All rights reserved. |
| # Use of this source code is governed by a BSD-style |
| # license that can be found in the LICENSE file or at |
| # https://developers.google.com/open-source/licenses/bsd |
| |
| from __future__ import print_function |
| from __future__ import division |
| from __future__ import absolute_import |
| |
| import StringIO |
| import tensorflow as tf |
| |
| import csv |
| import sys |
| from googleapiclient import discovery |
| from googleapiclient import errors |
| from oauth2client.client import GoogleCredentials |
| |
| import trainer.ml_helpers |
| |
| |
| def fetch_training_data(bucket, prefix, trainer_type): |
| |
| credentials = GoogleCredentials.get_application_default() |
| storage = discovery.build('storage', 'v1', credentials=credentials) |
| objects = storage.objects() |
| |
| request = objects.list(bucket=bucket, prefix=prefix) |
| response = make_api_request(request) |
| items = response.get('items') |
| csv_filepaths = [blob.get('name') for blob in items] |
| |
| if trainer_type == 'spam': |
| return fetch_spam(csv_filepaths, bucket, objects) |
| else: |
| return fetch_component(csv_filepaths, bucket, objects) |
| |
| |
| def fetch_spam(csv_filepaths, bucket, objects): |
| |
| training_data = [] |
| # Add code |
| csv_filepaths = [ |
| 'spam-training-data/full-android.csv', |
| 'spam-training-data/full-support.csv', |
| ] + csv_filepaths |
| |
| for filepath in csv_filepaths: |
| media = fetch_training_csv(filepath, objects, bucket) |
| rows, skipped_rows = trainer.ml_helpers.spam_from_file( |
| StringIO.StringIO(media)) |
| |
| if len(rows): |
| training_data.extend(rows) |
| |
| tf.logging.info('{:<40}{:<20}{:<20}'.format( |
| filepath, |
| 'added %d rows' % len(rows), |
| 'skipped %d rows' % skipped_rows)) |
| |
| return training_data |
| |
| |
| def fetch_component(csv_filepaths, bucket, objects): |
| |
| training_data = [] |
| for filepath in csv_filepaths: |
| media = fetch_training_csv(filepath, objects, bucket) |
| rows = trainer.ml_helpers.component_from_file( |
| StringIO.StringIO(media)) |
| |
| if len(rows): |
| training_data.extend(rows) |
| |
| tf.logging.info('{:<40}{:<20}'.format( |
| filepath, |
| 'added %d rows' % len(rows))) |
| |
| return training_data |
| |
| |
| def fetch_training_csv(filepath, objects, bucket): |
| request = objects.get_media(bucket=bucket, object=filepath) |
| return make_api_request(request) |
| |
| |
| def make_api_request(request): |
| try: |
| return request.execute() |
| except errors.HttpError, err: |
| tf.logging.error('There was an error with the API. Details:') |
| tf.logging.error(err._get_reason()) |
| raise |
| |
| |