blob: 0def4b6ce56095096fdf9f8949efd8906e6cf36b [file] [log] [blame]
# Copyright 2018 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file or at
# https://developers.google.com/open-source/licenses/bsd
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import StringIO
import tensorflow as tf
import csv
import sys
from googleapiclient import discovery
from googleapiclient import errors
from oauth2client.client import GoogleCredentials
import trainer.ml_helpers
def fetch_training_data(bucket, prefix, trainer_type):
credentials = GoogleCredentials.get_application_default()
storage = discovery.build('storage', 'v1', credentials=credentials)
objects = storage.objects()
request = objects.list(bucket=bucket, prefix=prefix)
response = make_api_request(request)
items = response.get('items')
csv_filepaths = [blob.get('name') for blob in items]
if trainer_type == 'spam':
return fetch_spam(csv_filepaths, bucket, objects)
else:
return fetch_component(csv_filepaths, bucket, objects)
def fetch_spam(csv_filepaths, bucket, objects):
training_data = []
# Add code
csv_filepaths = [
'spam-training-data/full-android.csv',
'spam-training-data/full-support.csv',
] + csv_filepaths
for filepath in csv_filepaths:
media = fetch_training_csv(filepath, objects, bucket)
rows, skipped_rows = trainer.ml_helpers.spam_from_file(
StringIO.StringIO(media))
if len(rows):
training_data.extend(rows)
tf.logging.info('{:<40}{:<20}{:<20}'.format(
filepath,
'added %d rows' % len(rows),
'skipped %d rows' % skipped_rows))
return training_data
def fetch_component(csv_filepaths, bucket, objects):
training_data = []
for filepath in csv_filepaths:
media = fetch_training_csv(filepath, objects, bucket)
rows = trainer.ml_helpers.component_from_file(
StringIO.StringIO(media))
if len(rows):
training_data.extend(rows)
tf.logging.info('{:<40}{:<20}'.format(
filepath,
'added %d rows' % len(rows)))
return training_data
def fetch_training_csv(filepath, objects, bucket):
request = objects.get_media(bucket=bucket, object=filepath)
return make_api_request(request)
def make_api_request(request):
try:
return request.execute()
except errors.HttpError, err:
tf.logging.error('There was an error with the API. Details:')
tf.logging.error(err._get_reason())
raise