blob: 45dbc4d4665b7ad9a002ba40e5cd1e32c8c06a3e [file] [log] [blame]
Adrià Vilanova Martínez8e1c8c32022-01-09 17:04:39 +01001% !TEX root = main.tex
2\chapter{The symbolic method}
3
4\section{Introduction}
5\begin{defi}[combinatorial class]
6 A \underline{combinatorial class} is a pair $(A, |\cdot|)$, where $A$ is a countable class of objects together with a \underline{size} function
7 \[ \begin{array}{rccc}
8 H: & A & \longrightarrow & \n \\
9 & \alpha & \longmapsto & |\alpha|
10 \end{array} \]
11 such that $A_n := \{ \alpha \in A : \; |\alpha| = n \}$ is finite for every $n$.
12\end{defi}
13
14\begin{defi}[generating function of a!combinatorial class]
15 The \underline{generating function} of a class $A$ is:
16 \[ A(z) = \sum_{\alpha \in A} z^{|\alpha|} = \sum_{n \geq 0} a_n z^n, \quad a_n = |A_n|. \]
17\end{defi}
18
19\begin{defi}
20 The \underline{sum} $\mathcal{C} = A + B$ (disjoint union) is such that $C(z) = A(z) + B(z)$.
21\end{defi}
22
23\begin{defi}
24 The \underline{product} $\mathcal{C} = A \times B$ (cartesian product) is such that $|(\alpha, \beta)|_\mathcal{C} = |\alpha|_A + |\beta|_A$, so $\mathcal{C}(z) = A(z) \cdot B(z)$.
25\end{defi}
26
27\begin{defi}
28 The \underline{sequence} of a combinatorial class is defined as the combinatorial class with class
29 \[ \mathcal{C} = S(A) = \{ \varepsilon \} + A + A \times A + \cdots + A^n + \cdots, \]
30 where $\varepsilon$ is the combinatorial class with 1 element of size 0. Its generating function is:
31 \[ C(z) = 1 + A(z) + A^2(z) + \cdots = \frac{1}{1 - A(z)}. \]
32\end{defi}
33
34\section{Some examples}
35\subsection{Composition of numbers}
36\begin{example}[Composition of numbers into parts in $\{1, 2\} = B$]
37 \[ I_{\{1, 2\}} = \Seq(\{1, 2\}) = \Seq(B), \]
38 \[ I_{\{1, 2\}}(z) = \frac{1}{1 - B(z)} = \frac{1}{1 - z - z^2} = \sum_{n \geq 1} F_n z^n. \]
39\end{example}
40
41\begin{example}[Composition of numbers into odd numbers]
42 Let $O$ be the class of odd numbers. Then:
43 \[ O(z) = z + z^3 + z^5 + \cdots = \frac{z}{1 - z^2}, \]
44 \[ \Gamma_O = \Seq(O), \quad \Gamma_O(z) = \frac{1 - z^2}{1 - z - z^2}. \]
45\end{example}
46
47\begin{example}[Composition of numbers into an even number of parts]
48 Let $\n$ be the class of natural numbers with the natural size function. Then:
49 \[ N(z) = \frac{z}{1 - z}, \quad \Gamma^{(E)} = \varepsilon + \n^2 + \n^4 + \cdots, \quad \Gamma^{(E)} (z) = \frac{1}{1 - \left( \frac{z}{1 - z} \right)^2}. \]
50\end{example}
51
52\subsection{Partitions of numbers}
53\begin{example}[Partitions of numbers]
54 In this case, the objects of the class of integer partitions $P$ are $k$-tuples of positive integers $(a_1, a_2, \ldots, a_k), \, a_1 \leq a_2 \leq \cdots \leq a_k$.
55 \[ P = \Seq(\{1\}) \times \Seq(\{2\}) \times \cdots, \quad P(z) = \prod_{n \geq 1} \frac{1}{1 - z^n}. \]
56\end{example}
57
58\begin{example}[Partitions of numbers into 1s and 2s]
59 \[ P = \Seq(\{1\}) \times \Seq(\{2\}). \]
60\end{example}
61
62\subsection{Partitions of sets}
63\begin{defi}
64 The \underline{Stirling number of second kind} denotes the number of partitions of $[n]$ into $k$ parts:
65 \[ \stirlingsec{n}{k} = \frac{1}{k!} \sum_{j = 1}^k \binom{k}{j} j^n (-1)^{k - j}. \]
66\end{defi}
67
68This result comes from describing the partitions as $n$-tuples of letters from an alphabet which consists of $k$ letters, and considering the following symbolic description:
69\[ P = \{ b_1 \} \times \Seq(\{ b_1 \}) \times \{ b_2 \} \times \Seq(\{ b_1 \times b_2 \}) \times \cdots \times \{ b_k \} \times \Seq(\{ b_1, b_2, \ldots, b_k \}). \]
70
71\section{Formal power series}
72\begin{prop}
73 Let $A(z)$ be a formal power series with $a_0 = 0$, and let $B(z)$ be its functional inverse ($B(A(z)) = z$). Then:
74 \[ [z^n] B(z) = b_n = [z^{-1}] \left( \frac{1}{n A^n(z)} \right). \]
75\end{prop}
76
77\begin{prop}[Lagrange inversion formula]
78 Let $\phi(z) = \sum_{n \geq 0} a_n z^n$, $a_0 \neq 0$.
79
80 If $A(z) = z \phi(A(z))$, then:
81 \[ [z^n] A(z) = \frac{1}{n} [z^{n - 1}] (\phi(z))^n. \]
82\end{prop}
83
84\section{Dyck paths}
85Let $D$ be the paths in the integer plane $\z^2$ with steps:
86\[ \begin{cases}
87 (x, y) \rightarrow (x + 1, y + 1) \quad (\{ \nearrow \}), \\
88 (x, y) \rightarrow (x + 1, y - 1) \quad (\{ \searrow \}),
89\end{cases} \]
90starting at $(0, 0)$, ending at $(2n, 0)$ without crossing the line $\{ y = 0 \}$. Then:
91\[ D = \{ \varepsilon \} + \{ \nearrow \} \times D \times \{ \searrow \} \times D, \]
92and
93\[ [z^{2m}] D(z) = C_m, \]
94the $m$-th Catalan number.
95
96\begin{defi}
97 The \underline{m-th Catalan number} is:
98 \[ C_m := \frac{1}{m + 1} \binom{2m}{m}. \]
99\end{defi}
100
101\section{Plane trees}
102Let $\tau$ be the class of rooted trees embedded in the plane such that that there is a root, and the order of the subtrees branching from each node is relevant. Then:
103\[ \tau = N \times \Seq(\tau), \quad [z^n] T(z) = C_{n - 1}. \]
104
105\begin{example}[Binary trees]
106 \[ \beta = \varepsilon + N \times \beta \times \beta, \quad [z^n] B(z) = C_n. \]
107\end{example}
108
109\section{Lagrange-Bürman formula}
110\begin{teo}[Lagrange-Bürman formula]
111 Generalization of Lagrange's formula: let $g \in \cx[[x]]$ ($g$ can also be any analytic function). Then:
112 \[ [z^n] g(A(z)) = \frac{1}{n} [z^{n - 1}] g'(z) (\phi(z))^n. \]
113\end{teo}