Adrià Vilanova Martínez | 8e1c8c3 | 2022-01-09 17:04:39 +0100 | [diff] [blame] | 1 | % !TEX root = main.tex |
| 2 | \chapter{The symbolic method} |
| 3 | |
| 4 | \section{Introduction} |
| 5 | \begin{defi}[combinatorial class] |
| 6 | A \underline{combinatorial class} is a pair $(A, |\cdot|)$, where $A$ is a countable class of objects together with a \underline{size} function |
| 7 | \[ \begin{array}{rccc} |
| 8 | H: & A & \longrightarrow & \n \\ |
| 9 | & \alpha & \longmapsto & |\alpha| |
| 10 | \end{array} \] |
| 11 | such that $A_n := \{ \alpha \in A : \; |\alpha| = n \}$ is finite for every $n$. |
| 12 | \end{defi} |
| 13 | |
| 14 | \begin{defi}[generating function of a!combinatorial class] |
| 15 | The \underline{generating function} of a class $A$ is: |
| 16 | \[ A(z) = \sum_{\alpha \in A} z^{|\alpha|} = \sum_{n \geq 0} a_n z^n, \quad a_n = |A_n|. \] |
| 17 | \end{defi} |
| 18 | |
| 19 | \begin{defi} |
| 20 | The \underline{sum} $\mathcal{C} = A + B$ (disjoint union) is such that $C(z) = A(z) + B(z)$. |
| 21 | \end{defi} |
| 22 | |
| 23 | \begin{defi} |
| 24 | The \underline{product} $\mathcal{C} = A \times B$ (cartesian product) is such that $|(\alpha, \beta)|_\mathcal{C} = |\alpha|_A + |\beta|_A$, so $\mathcal{C}(z) = A(z) \cdot B(z)$. |
| 25 | \end{defi} |
| 26 | |
| 27 | \begin{defi} |
| 28 | The \underline{sequence} of a combinatorial class is defined as the combinatorial class with class |
| 29 | \[ \mathcal{C} = S(A) = \{ \varepsilon \} + A + A \times A + \cdots + A^n + \cdots, \] |
| 30 | where $\varepsilon$ is the combinatorial class with 1 element of size 0. Its generating function is: |
| 31 | \[ C(z) = 1 + A(z) + A^2(z) + \cdots = \frac{1}{1 - A(z)}. \] |
| 32 | \end{defi} |
| 33 | |
| 34 | \section{Some examples} |
| 35 | \subsection{Composition of numbers} |
| 36 | \begin{example}[Composition of numbers into parts in $\{1, 2\} = B$] |
| 37 | \[ I_{\{1, 2\}} = \Seq(\{1, 2\}) = \Seq(B), \] |
| 38 | \[ I_{\{1, 2\}}(z) = \frac{1}{1 - B(z)} = \frac{1}{1 - z - z^2} = \sum_{n \geq 1} F_n z^n. \] |
| 39 | \end{example} |
| 40 | |
| 41 | \begin{example}[Composition of numbers into odd numbers] |
| 42 | Let $O$ be the class of odd numbers. Then: |
| 43 | \[ O(z) = z + z^3 + z^5 + \cdots = \frac{z}{1 - z^2}, \] |
| 44 | \[ \Gamma_O = \Seq(O), \quad \Gamma_O(z) = \frac{1 - z^2}{1 - z - z^2}. \] |
| 45 | \end{example} |
| 46 | |
| 47 | \begin{example}[Composition of numbers into an even number of parts] |
| 48 | Let $\n$ be the class of natural numbers with the natural size function. Then: |
| 49 | \[ N(z) = \frac{z}{1 - z}, \quad \Gamma^{(E)} = \varepsilon + \n^2 + \n^4 + \cdots, \quad \Gamma^{(E)} (z) = \frac{1}{1 - \left( \frac{z}{1 - z} \right)^2}. \] |
| 50 | \end{example} |
| 51 | |
| 52 | \subsection{Partitions of numbers} |
| 53 | \begin{example}[Partitions of numbers] |
| 54 | In this case, the objects of the class of integer partitions $P$ are $k$-tuples of positive integers $(a_1, a_2, \ldots, a_k), \, a_1 \leq a_2 \leq \cdots \leq a_k$. |
| 55 | \[ P = \Seq(\{1\}) \times \Seq(\{2\}) \times \cdots, \quad P(z) = \prod_{n \geq 1} \frac{1}{1 - z^n}. \] |
| 56 | \end{example} |
| 57 | |
| 58 | \begin{example}[Partitions of numbers into 1s and 2s] |
| 59 | \[ P = \Seq(\{1\}) \times \Seq(\{2\}). \] |
| 60 | \end{example} |
| 61 | |
| 62 | \subsection{Partitions of sets} |
| 63 | \begin{defi} |
| 64 | The \underline{Stirling number of second kind} denotes the number of partitions of $[n]$ into $k$ parts: |
| 65 | \[ \stirlingsec{n}{k} = \frac{1}{k!} \sum_{j = 1}^k \binom{k}{j} j^n (-1)^{k - j}. \] |
| 66 | \end{defi} |
| 67 | |
| 68 | This result comes from describing the partitions as $n$-tuples of letters from an alphabet which consists of $k$ letters, and considering the following symbolic description: |
| 69 | \[ P = \{ b_1 \} \times \Seq(\{ b_1 \}) \times \{ b_2 \} \times \Seq(\{ b_1 \times b_2 \}) \times \cdots \times \{ b_k \} \times \Seq(\{ b_1, b_2, \ldots, b_k \}). \] |
| 70 | |
| 71 | \section{Formal power series} |
| 72 | \begin{prop} |
| 73 | Let $A(z)$ be a formal power series with $a_0 = 0$, and let $B(z)$ be its functional inverse ($B(A(z)) = z$). Then: |
| 74 | \[ [z^n] B(z) = b_n = [z^{-1}] \left( \frac{1}{n A^n(z)} \right). \] |
| 75 | \end{prop} |
| 76 | |
| 77 | \begin{prop}[Lagrange inversion formula] |
| 78 | Let $\phi(z) = \sum_{n \geq 0} a_n z^n$, $a_0 \neq 0$. |
| 79 | |
| 80 | If $A(z) = z \phi(A(z))$, then: |
| 81 | \[ [z^n] A(z) = \frac{1}{n} [z^{n - 1}] (\phi(z))^n. \] |
| 82 | \end{prop} |
| 83 | |
| 84 | \section{Dyck paths} |
| 85 | Let $D$ be the paths in the integer plane $\z^2$ with steps: |
| 86 | \[ \begin{cases} |
| 87 | (x, y) \rightarrow (x + 1, y + 1) \quad (\{ \nearrow \}), \\ |
| 88 | (x, y) \rightarrow (x + 1, y - 1) \quad (\{ \searrow \}), |
| 89 | \end{cases} \] |
| 90 | starting at $(0, 0)$, ending at $(2n, 0)$ without crossing the line $\{ y = 0 \}$. Then: |
| 91 | \[ D = \{ \varepsilon \} + \{ \nearrow \} \times D \times \{ \searrow \} \times D, \] |
| 92 | and |
| 93 | \[ [z^{2m}] D(z) = C_m, \] |
| 94 | the $m$-th Catalan number. |
| 95 | |
| 96 | \begin{defi} |
| 97 | The \underline{m-th Catalan number} is: |
| 98 | \[ C_m := \frac{1}{m + 1} \binom{2m}{m}. \] |
| 99 | \end{defi} |
| 100 | |
| 101 | \section{Plane trees} |
| 102 | Let $\tau$ be the class of rooted trees embedded in the plane such that that there is a root, and the order of the subtrees branching from each node is relevant. Then: |
| 103 | \[ \tau = N \times \Seq(\tau), \quad [z^n] T(z) = C_{n - 1}. \] |
| 104 | |
| 105 | \begin{example}[Binary trees] |
| 106 | \[ \beta = \varepsilon + N \times \beta \times \beta, \quad [z^n] B(z) = C_n. \] |
| 107 | \end{example} |
| 108 | |
| 109 | \section{Lagrange-Bürman formula} |
| 110 | \begin{teo}[Lagrange-Bürman formula] |
| 111 | Generalization of Lagrange's formula: let $g \in \cx[[x]]$ ($g$ can also be any analytic function). Then: |
| 112 | \[ [z^n] g(A(z)) = \frac{1}{n} [z^{n - 1}] g'(z) (\phi(z))^n. \] |
| 113 | \end{teo} |