blob: 2688d5394f24ac7fa034791e90c520414c70026f [file] [log] [blame]
avm9996302003e72021-06-22 12:25:46 +02001% !TEX root = main.tex
2\chapter{The strain tensor (el tensor de deformacions)}
3
4\section{Deformations}
5\begin{defi}[Displacement vector]
6 The \underline{displacement vector} is:
7 \[\vec{u}(\vec{r}) = \vec{r'} - \vec{r}, \]
8 and determines the displacement of materials particles in the medium.
9\end{defi}
10
11\section{Strain tensor and Cauchy's strain tensor}
12\begin{defi}[Strain!tensor]
13 The \underline{strain tensor} $\TT{u}$ characterizes the local deformations state of the medium, and is defined as:
14 \[ u_{ik} = \frac{1}{2} \left( \partial_k u_i + \partial_i u_k + \sum_l \partial_i u_l \cdot \partial_k u_l \right). \]
15\end{defi}
16
17\begin{obs}
18 By definition $\TT{u}$ is symmetric. Thus, it can be diagonalized at every point; that is, we can find 3 axes such as that
19 \[ \TT{u} = \begin{pmatrix}
20 u^{(1)} & 0 & 0 \\
21 0 & u^{(2)} & 0 \\
22 0 & 0 & u^{(3)}
23 \end{pmatrix}. \]
24
25 The eigenvalues of $\TT{u}$ correspond, for small deformations, to the relative change in length along the principal directions:
26 \[ \frac{\dif x_i' - \dif x_i}{\dif x_i} \approx u^{(i)}. \]
27\end{obs}
28
29\begin{defi}[Cauchy's!strain tensor]
30 For small deformations, we can neglect the last term of the strain tensor, and use \underline{Cauchy's strain tensor}:
31 \[ \TT{u} = \left( \grad \vec{u} + (\grad \TT{u})^T \right) \]
32\end{defi}
33
34\begin{obs}
35 In the limit of small deformations, the volume changes as:
36 \[ \frac{\dif V' - \dif V}{\dif V} \approx u^{(1)} + u^{(2)} + u^{(3)} = \Tr(\TT{u}) = \div \vec{u}. \]
37
38 Note the trace of a matrix is an invariant under change of representation, so this always holds.
39\end{obs}
40
41\begin{obs}
42 \index{Incompressibility}
43 The previous observation means we can impose incompressibility by imposing $\Tr(\TT{u}) = \div \vec{u} = 0.$
44\end{obs}
45
46\begin{obs}
47 The strain tensor contains all the information about the local geometric changes caused by the displacement: it's a good measure of the local deformation.
48\end{obs}