avm99963 | 02003e7 | 2021-06-22 12:25:46 +0200 | [diff] [blame] | 1 | % !TEX root = main.tex |
| 2 | \chapter{The strain tensor (el tensor de deformacions)} |
| 3 | |
| 4 | \section{Deformations} |
| 5 | \begin{defi}[Displacement vector] |
| 6 | The \underline{displacement vector} is: |
| 7 | \[\vec{u}(\vec{r}) = \vec{r'} - \vec{r}, \] |
| 8 | and determines the displacement of materials particles in the medium. |
| 9 | \end{defi} |
| 10 | |
| 11 | \section{Strain tensor and Cauchy's strain tensor} |
| 12 | \begin{defi}[Strain!tensor] |
| 13 | The \underline{strain tensor} $\TT{u}$ characterizes the local deformations state of the medium, and is defined as: |
| 14 | \[ u_{ik} = \frac{1}{2} \left( \partial_k u_i + \partial_i u_k + \sum_l \partial_i u_l \cdot \partial_k u_l \right). \] |
| 15 | \end{defi} |
| 16 | |
| 17 | \begin{obs} |
| 18 | By definition $\TT{u}$ is symmetric. Thus, it can be diagonalized at every point; that is, we can find 3 axes such as that |
| 19 | \[ \TT{u} = \begin{pmatrix} |
| 20 | u^{(1)} & 0 & 0 \\ |
| 21 | 0 & u^{(2)} & 0 \\ |
| 22 | 0 & 0 & u^{(3)} |
| 23 | \end{pmatrix}. \] |
| 24 | |
| 25 | The eigenvalues of $\TT{u}$ correspond, for small deformations, to the relative change in length along the principal directions: |
| 26 | \[ \frac{\dif x_i' - \dif x_i}{\dif x_i} \approx u^{(i)}. \] |
| 27 | \end{obs} |
| 28 | |
| 29 | \begin{defi}[Cauchy's!strain tensor] |
| 30 | For small deformations, we can neglect the last term of the strain tensor, and use \underline{Cauchy's strain tensor}: |
| 31 | \[ \TT{u} = \left( \grad \vec{u} + (\grad \TT{u})^T \right) \] |
| 32 | \end{defi} |
| 33 | |
| 34 | \begin{obs} |
| 35 | In the limit of small deformations, the volume changes as: |
| 36 | \[ \frac{\dif V' - \dif V}{\dif V} \approx u^{(1)} + u^{(2)} + u^{(3)} = \Tr(\TT{u}) = \div \vec{u}. \] |
| 37 | |
| 38 | Note the trace of a matrix is an invariant under change of representation, so this always holds. |
| 39 | \end{obs} |
| 40 | |
| 41 | \begin{obs} |
| 42 | \index{Incompressibility} |
| 43 | The previous observation means we can impose incompressibility by imposing $\Tr(\TT{u}) = \div \vec{u} = 0.$ |
| 44 | \end{obs} |
| 45 | |
| 46 | \begin{obs} |
| 47 | The strain tensor contains all the information about the local geometric changes caused by the displacement: it's a good measure of the local deformation. |
| 48 | \end{obs} |