blob: 3b43d2f5ca68a02bfcacdb2ce5e4b835b31b34be [file] [log] [blame]
Adrià Vilanova Martínezce8597a2021-09-21 18:26:59 +02001\documentclass[11pt,a4paper,dvipsnames]{article}
2\usepackage[utf8]{inputenc}
3
4\input{../preamble.tex}
5
6\title{Homework 4\\Continuum Mechanics}
7\author{Adrià Vilanova Martínez}
8\date{April 11, 2021}
9
10\begin{document}
11
12\maketitle
13
14\begin{Problem}
15 Consider a solid sphere of constant density $\rho$ and undeformed radius $R$, subjected to its own gravitational force. It is made of an elastically homogeneous and isotropic material of Young's modulus $Y$ and Poisson's ratio $\nu$.
16
17 \begin{enumerate}
18 \item Determine the displacement field of the material particles in the sphere.
19 \item Compute the corresponding strain and stress fields.
20 \end{enumerate}
21
22 \underline{Note:} The gravitational force per unit volume experienced by a material particle is: $\vec{f} = \rho \vec{g} = - \rho g \frac{r}{R} \hat{e}_r$, where $g = \frac{4}{3} \pi G \rho R$, with $G$ the gravitational constant.
23\end{Problem}
24
25\Solution
26The displacement field in spherical coordinates will be $\vec{u} = (u_r(r), 0, 0)$ due to the symmetry of the problem.
27
28Let's use Navier-Cauchy's equation:
29\[ \vec{f} + \mu \vec{\nabla}^2 \vec{u} + (\lambda + \mu) \vec{\nabla} (\vec{\nabla} \cdot \vec{u}) = 0 \]
30which in spherical coordinates becomes:
31\[ \begin{pmatrix}
32 - \rho g \frac{r}{R} \\
33 0 \\
34 0
35\end{pmatrix} + \mu \begin{pmatrix}
36 \partial^2_{rr} u_r + \frac{2}{r} \partial_r u_r - \frac{2}{r^2} u_r \\
37 0 \\
38 0
39\end{pmatrix} + (\lambda + \mu) \begin{pmatrix}
40 \partial^2_{rr} u_r + \frac{2}{r} \partial_r u_r - \frac{2}{r^2} u_r \\
41 0 \\
42 0
43\end{pmatrix} = 0 \iff \]
44\[ \iff - \rho g \frac{r}{R} + (\lambda + 2 \mu) \left( \partial^2_{rr} u_r + \frac{2}{r} \partial_r u_r - \frac{2}{r^2} u_r \right) = 0 \iff \]
45\[ \iff r^2 \partial^2_{rr} u_r + 2 r \partial_r u_r - u_r = \frac{\rho g}{(\lambda + 2 \mu) R} r^3 =: k r^3. \]
46
47If we take as an \textit{ansatz} the function
48\[ u_r(r) := a \cdot r^b, \]
49we can see that a particular solution to the ODE is
50\[ u_r(r) = \frac{k}{10} r^3. \]
51
52Due to the fact that the homogeneous part of the ODE has the solution space
53\[ \{ A r + B \frac{1}{r^2} : A, B \in \mathbb{R} \}, \]
54and the fact that since $u_r(r = 0) \neq \infty \implies B = 0$, we conclude that \[ \vec{u}(r) = \left( \frac{k}{10} r^3 + A r, 0, 0 \right). \]
55
56Since we have
57\[ \vec{\nabla} \vec{u} = \begin{pmatrix}
58 \frac{3}{10} k r^2 + A & 0 & 0 \\
59 0 & \frac{1}{10} k r^2 + A & 0 \\
60 0 & 0 & \frac{1}{10} k r^2 + A
61\end{pmatrix}, \]
62Cauchy's strain tensor is:
63\[ \TT{u} = \frac{1}{2} \left( \vec{\nabla} \vec{u} + (\vec{\nabla} \vec{u})^T \right) = \vec{\nabla} \vec{u}. \]
64
65Via Hooke's law, the only non-zero components of the stress vector are the ones in the diagonal:
66\[ \sigma_{ii} = 2 \mu u_{ii} + \lambda \Tr \TT{u} \implies \]
67\[ \TT{\sigma} = \begin{pmatrix}
68 \frac{6 \mu + 5 \lambda}{10} k r^2 + (3 \lambda + 2 \mu) A & 0 & 0 \\
69 0 & \frac{2 \mu + 5 \lambda}{10} k r^2 + (3 \lambda + 2 \mu) A & 0 \\
70 0 & 0 & \frac{2 \mu + 5 \lambda}{10} k r^2 + (3 \lambda + 2 \mu) A \\
71\end{pmatrix}. \]
72
73If we impose the boundary condition $\sigma_{rr} (r = R) = 0$ (free surface), we get:
74\[ (3 \lambda + 2 \mu) A = \frac{6 \mu + 5 \lambda}{10} k R^2. \]
75
76We can transform $Y$ and $\nu$ into the Lamé coefficients by applying the following transformation:
77\[ \begin{cases}
78 \lambda = \frac{Y \nu}{(1 - 2 \nu) (1 + \nu)}, \\
79 \mu = \frac{Y}{2 (1 + \nu)}.
80\end{cases} \]
81
82\newpage
83
84\begin{Problem}
85 A cylindrical pipe of inner radius $R_0$, outer radius $R_1$, and Lame coefficients $\mu$ and $\lambda$, is subjected to an internal pressure $p_0$, an external pressure $p_1$, and a uniform tensile force per unit area $F_z/A$ along the symmetry axis of the pipe $z$. Consider the end of the pipe at $z = 0$ is clamped to a rigid wall.
86
87 \begin{enumerate}
88 \item Determine the displacement field corresponding to the elastic deformation of the pipe. Neglect gravity and corrections due to the finite length of the pipe.
89
90 \item Compute the stress and strain fields corresponding to such deformation.
91 \end{enumerate}
92\end{Problem}
93
94We'll consider the displacement field resulting from the hydrostatic pressure, and the one resulting from the tensile force.
95
96\textbf{Displacement field resulting from the hydrostatic pressure:}
97
98Due to the symmetry of the problem in this case, we have that $\vec{u} = (u_r(r), 0, 0)$ in cylindrical coordinates.
99
100By applying the Navier-Cauchy equation, we get:
101\[ (\lambda + 2 \mu) \frac{d}{dr} \left( \frac{1}{r} \frac{d}{dr} (r u_r) \right) \implies u_r = \alpha r + \beta \frac{1}{r}. \]
102
103Therefore, we have that the only non-zero components of the strain tensor are:
104\[ u_{rr} = \frac{d u_r}{dr} = \alpha - \beta \frac{1}{r^2}, \]
105\[ u_{\phi\phi} = \frac{u_r}{r} = \alpha + \beta \frac{1}{r^2}. \]
106
107By using Hooke's law, we get:
108\[ \sigma_{rr} = 2 \alpha (\lambda + \mu) - 2 \beta \mu \frac{1}{r^2}, \]
109\[ \sigma_{\theta \theta} = 2 \alpha (\lambda + \mu) + 2 \beta \mu \frac{1}{r^2}, \]
110\[ \sigma_{zz} = 2 \alpha \lambda. \]
111
112We can now impose the boundary conditions $\sigma_{rr}(z = R_0) = - p_0$, $\sigma_{rr}(z = R_1) = - p_1$, and we get:
113\[ \alpha = \frac{p_0 R_0^2 - p_1 R_1^2}{2 (\lambda + \mu) (R_1^2 - R_0^2)}, \]
114\[ \beta = \frac{(p_0 - p_1) R_0^2 R_1^2}{2 \mu (R_1^2 - R_0^2)}. \]
115
116\textbf{Displacement field resulting from the tensible force:}
117
118Due to the uniform force, we have that:
119\[ \sigma_{zz} = \frac{F_z}{A}, \]
120which is the only non-zero component of the stress tensor. Therefore, from Hooke's law we have that the only non-zero components of the strain tensor are:
121\[ u_{zz} = \frac{1}{Y} \sigma_{zz} = \frac{F_z}{A Y}, \]
122\[ u_{rr} = - \nu u_{zz} = - \frac{F_z \nu}{A Y}, \]
123\[ u_{\theta \theta} = - \nu u_{zz} = - \frac{F_z \nu}{A Y}. \]
124
125Now we can integrate (in cylindrical coordinates) the previous expressions to find the displacement field:
126\[ u_{zz} = \frac{du_z}{dz} \implies u_z(z) = \frac{F_z}{AY} z + c, \]
127and since $u_z(0) = 0$, we have:
128\[ u_z(z) = \frac{F_z}{AY} z. \]
129
130Also:
131\[ u_{rr} = \frac{du_r}{dr} \implies u_r(r) = - \frac{F_z \nu}{A Y} r + c', \]
132and since $u_{\theta \theta} = \frac{u_r(r)}{r} \implies c' = 0$, then:
133\[ u_r(r) = - \frac{F_z \nu}{A Y} r \]
134
135\textbf{Conclusion:}
136
137Thanks to the superposition principle, we can sum the previous displacement fields to calculate the total displacement field:
138\[ \vec{u}(r) = \begin{pmatrix}
139 \left( \alpha - \frac{F_z \nu}{A Y} \right) r + \beta \frac{1}{r} \\
140 0 \\
141 \frac{F_z}{A Y} z
142\end{pmatrix}. \]
143
144As for the strain and stress tensors, we can do the same in order to get their total expressions:
145\[ \TT{\sigma} = \begin{pmatrix}
146 2 \alpha (\lambda + \mu) - 2 \beta \mu \frac{1}{r^2} & 0 & 0 \\
147 0 & 2 \alpha (\lambda + \mu) + 2 \beta \mu \frac{1}{r^2} & 0 \\
148 0 & 0 & 2 \alpha \lambda + \frac{F_z}{A}
149\end{pmatrix}, \]
150\[ \TT{u} = \begin{pmatrix}
151 \alpha - \beta \frac{1}{r^2} - \frac{F_z \nu}{A Y} & 0 & 0 \\
152 0 & \alpha + \beta \frac{1}{r^2} - \frac{F_z \nu}{A Y} & 0 \\
153 0 & 0 & \frac{F_z}{A Y}
154\end{pmatrix}. \]
155
156\end{document}