Adrià Vilanova Martínez | 72184a0 | 2022-03-23 00:47:41 +0100 | [diff] [blame^] | 1 | \documentclass[a4paper,11pt]{article} |
| 2 | |
| 3 | \usepackage[portrait,margin=0.5in,top=0.5in,bottom=0.5in]{geometry} |
| 4 | \usepackage{amsmath,multicol,siunitx,amsfonts,adjustbox} |
| 5 | \usepackage[tiny]{titlesec} |
| 6 | \usepackage[version=4]{mhchem} |
| 7 | \usepackage[overload]{abraces} |
| 8 | \usepackage{physics} |
| 9 | |
| 10 | \usepackage[utf8]{inputenc} |
| 11 | \usepackage[spanish]{babel} |
| 12 | \titlespacing{\section}{0pt}{5pt}{0pt} |
| 13 | \titlespacing{\subsection}{0pt}{5pt}{0pt} |
| 14 | \titlespacing{\subsubsection}{0pt}{5pt}{0pt} |
| 15 | \setlength{\parindent}{0pt} |
| 16 | \setlength{\parskip}{1.2em} |
| 17 | \pagenumbering{gobble} |
| 18 | \setlength{\columnseprule}{1pt} |
| 19 | |
| 20 | \newcommand{\forceindent}{\leavevmode{\parindent=1em\indent}} |
| 21 | |
| 22 | \title{\vspace{-1em} Formulari parcial Física Atòmica i Radiació} |
| 23 | \author{Adrià Vilanova Martínez} |
| 24 | \date{} |
| 25 | |
| 26 | \everymath{\displaystyle} |
| 27 | \def\hrulefilll{\leavevmode\leaders\hrule height 1.4pt\hfill\kern 0pt} |
| 28 | \def\hrulefillll{\leavevmode\leaders\hrule height 2.1pt\hfill\kern 0pt} |
| 29 | \newcommand*{\pcdot}{\makebox[1ex]{\textbf{$\cdot$}}}% |
| 30 | \newcommand*{\Ha}{\mathcal{H}}% |
| 31 | |
| 32 | \begin{document} |
| 33 | \maketitle |
| 34 | |
| 35 | \begin{multicols*}{2} |
| 36 | \section{Unitats atòmiques} |
| 37 | |
| 38 | $m_e = e = \hbar = 1 \, \text{(u.a.)}, \quad \mu = e = \hbar = 1 \, \text{(u.a. gen.)}$. |
| 39 | |
| 40 | $a_0 = \frac{\hbar^2}{m_e e^2}$ (\underline{radi de Bohr}). |
| 41 | |
| 42 | $E_h = \frac{m_e e^4}{\hbar^2} \approx \SI{27.211386}{\eV}$ (\underline{energia de Hartree}). |
| 43 | |
| 44 | $\alpha := \frac{e^2}{\hbar c} \approx \frac{1}{137}$ (\underline{constant d'estructura fina (FS)}). |
| 45 | |
| 46 | $t_0 = \frac{\hbar^3}{m_e e^4}, \quad v_0 = \frac{e^2}{\hbar}$ (\underline{velocidad de Bohr}). |
| 47 | |
| 48 | \hrulefilll |
| 49 | |
| 50 | \section{Estructura grossa d'àtoms hidrogenoides} |
| 51 | |
| 52 | {\small Nucli ($Q = Ze$, $M \approx Z m_p + N m_n \approx A m_p$) interaccionant electrostàticament amb electró ($Q = -e$, $m_e$).} |
| 53 | |
| 54 | $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} \implies \mu = \frac{m_1 m_2}{m_1 + m_2}$. |
| 55 | |
| 56 | \hrulefill |
| 57 | |
| 58 | $\Ha \psi(\mathbf{r}) = E \psi(\mathbf{r}), \quad \boxed{\Ha = - \frac{\hbar^2}{2 \mu} \laplacian_{\mathbf{r}} - \frac{Z e^2}{r}}$, \\[0.25em] |
| 59 | on $\laplacian_\mathbf{r} = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \pcdot) - \frac{\mathbf{L}^2}{r^2}, \quad \mathbf{L} := - i \mathbf{r} \times \grad$. |
| 60 | |
| 61 | $\psi(\mathbf{r}, \sigma) = \ket{n \, l \, m_l \, m_s} \frac{P_{nl}(r)}{r} Y_{lm}(\theta, \phi) (\chi_{m_s} (\sigma))$. |
| 62 | |
| 63 | $\bra{n' \, l' \, m_l' \, m_s'}\ket{n \, l \, m_l \, m_s} = \delta_{n' n} \, \delta_{l' l} \, \delta_{m_l' m_l} \, (\delta_{m_s' m_s}) =$ \\ |
| 64 | ${}\quad = \int_0^\infty dr \, P_{n' \, l'}(r) P_{n \, l}(r) \int_{4 \pi} d\Omega \, Y^*_{l' \, m'}(\hat{r}) Y_{l m}(\hat{r}) \times$ \\ |
| 65 | ${}\quad \times \left( \sum_\sigma \chi^*_{m_s'}(\sigma) \chi_{m_s}(\sigma) \right). \quad (d\mathbf{r} = r^2 \, dr \, \sin \theta \, d\theta \, d\phi)$. |
| 66 | |
| 67 | $\psi_{n l m}^{(Z)}(\mathbf{r}) = Z^{3/2} \psi_{n l m}^{(Z = 1)}(Z \mathbf{r})$. |
| 68 | |
| 69 | {\small $P_{nl}(r)$ satisfà l'EdS radial amb un potencial efectiu:} |
| 70 | $U_l(r) := \underbrace{- \frac{Z e^2}{r}}_{V(r)} + \underbrace{\frac{\hbar^2}{2 \mu} \frac{l(l + 1)}{r^2}}_\text{part radial de T}$. |
| 71 | |
| 72 | $\left[ \smash[b]{\underbrace{- \frac{\hbar^2}{2 \mu} \frac{d^2}{dr^2}}_\text{part de T}} + U_l(r) \right] P_{nl}(r) = E_n P_{nl}(r)$ \\[0.5em] |
| 73 | |
| 74 | $Y_{l m}(\theta, \phi) = (-1)^l \, Y_{l m}(\pi - \theta, \pi + \phi)$, per tant: \\ |
| 75 | $F(\mathbf{r}) := f(r) Y_{l m}(\mathbf{r}) \implies F(- \mathbf{r}) = (-1)^l F(\mathbf{r})$. |
| 76 | |
| 77 | $[\mathbf{L}^2, \Ha] = [L_z, \Ha] = [L_i, \mathcal{P}] = [\mathcal{P}, \Ha] = 0$. |
| 78 | |
| 79 | $\int_0^\infty P(r) \frac{d^2 P(r)}{dr^2} \, dr = - \int_0^\infty \left[ \frac{dP(r)}{dr} \right]^2 \, dr$ |
| 80 | |
| 81 | \hrulefill |
| 82 | |
| 83 | $\Ha \psi(\mathbf{r}) = E \psi(\mathbf{r}), \quad \mathbf{L}^2 \psi(\mathbf{r}) = l(l + 1) \psi(\mathbf{r})$, \\ |
| 84 | $L_z \psi(\mathbf{r}) = m \psi(\mathbf{r}), \quad \mathcal{P}^2 \psi(\mathbf{r}) = p \psi(\mathbf{r}) \quad (p \in \{-1, 1\})$. |
| 85 | |
| 86 | \hrulefill |
| 87 | |
| 88 | \underline{Energia sist. hidrogenoide (no relativista)} $g = (2)n^2$: |
| 89 | |
| 90 | $E_n = - \frac{1}{2} \frac{Z^2}{n^2} E_h, \; E_n = - \frac{1}{2} \frac{Z^2}{n^2} E_\mu, \; E_\mu = \frac{\mu}{m_e} E_h < E_h$. |
| 91 | |
| 92 | {\small $E_n(M) - E_m(M = \infty) = - \frac{m_e}{m_e + M} E_n(M = \infty) > 0$.} |
| 93 | |
| 94 | \underline{Th. Virial}: $V \propto \mathbf{r}^s \Rightarrow 2 \expval{T} = s \expval{V}$ {\small (Coulomb: $s = -1$).} |
| 95 | |
| 96 | \underline{Efecte Lamb (volum nuclear finit)}: \\[0.2em] |
| 97 | $\Delta E_{n \, l}^{\text{vnf}} \approx \frac{2}{5} \frac{Z^4}{n^3} \delta_{l 0} \left( \frac{R_N}{a_0} \right)^2 \left( \frac{\mu}{m_e} \right)^3 E_h \geq 0$, \\[0.4em] |
| 98 | {\small $R_N \approx 2.3 \cdot 10^{-5} a_0 A^{1/3}$. (trenca $l$, creix ràpidament amb $Z$).} |
| 99 | |
| 100 | \hrulefilll |
| 101 | |
| 102 | \section{Estructura fina (FS) d'àtoms hidrogenoides}\vspace{-.5em} |
| 103 | |
| 104 | { \small Té en compte spin i efectes relativistes, a ordre $\beta^2 \equiv \left(\frac{v}{c}\right)^2$ (amb potencial Coulombià). } |
| 105 | |
| 106 | \underline{Magnetó de Bohr}: $\mu_B := \frac{e \hbar}{2 m_e c}$. |
| 107 | |
| 108 | \underline{Moment dipolar magnètic orbital}: $\mathbf{M}_L = - g_L \mu_B \mathbf{L}$, amb $g_L = 1$. |
| 109 | |
| 110 | \underline{Moment dipolar magnètic d'espí}: $\mathbf{M}_S = - g_S \mu_B \mathbf{S}$, amb $g_S = 2$. |
| 111 | |
| 112 | $\boxed{\Ha_\text{fs} = \Ha_P + \Ha', \quad \Ha' = \Ha_\text{m} + \Ha_\text{so} + \Ha_\text{Darwin}},$ \\ |
| 113 | $\Ha_{so} = \xi(r) \, \mathbf{L} \cdot \mathbf{S}$, {\small on $\xi(r) := \frac{1}{2} \frac{\hbar^2 e^2}{m_e^2 c^2} Z \frac{1}{r^3}$.} |
| 114 | |
| 115 | Els $\ket{n \, l \, s \, j \, m}$ (\underline{base acoblada}) són VEPs de $\Ha'$. |
| 116 | |
| 117 | $E_{nlj} = E_n + \Delta E_{nlj}, \quad \Delta E_{nlj} = \expval{\Ha_\text{m}} + \expval{\Ha_\text{SO}} + \expval{\Ha_\text{DW}}$. |
| 118 | |
| 119 | {\small $\expval{\Ha_\text{SO}} = - E_n \frac{(\alpha Z)^2}{2n} \frac{j(j + 1) - l(l + 1) - \frac{3}{4}}{l\left(l + \frac{1}{2}\right)(l + 1)} (1 - \delta_{l0})$, \\ |
| 120 | $\expval{\Ha_\text{m}} = - E_n \left( \frac{\alpha Z}{n} \right)^2 \left( \frac{3}{4} - \frac{n}{l + \frac{1}{2}} \right) \leq 0$, \\ |
| 121 | $\expval{\Ha_\text{DW}} = - E_n \frac{(\alpha Z)^2}{n} \delta_{l0} \geq 0$.} |
| 122 | |
| 123 | $\Delta E_{nj} = E_n \left( \frac{\alpha Z}{n} \right)^2 \left[ \frac{n}{j + \frac{1}{2}} - \frac{3}{4} \right] < 0$. |
| 124 | |
| 125 | $E_{nj} = E_n + \Delta E_{nj}, \quad g = \begin{cases} |
| 126 | 2(2j + 1), & j < n - 1/2, \\ |
| 127 | 2j + 1, & j = n - 1/2. |
| 128 | \end{cases}$ |
| 129 | |
| 130 | {\small Donat $n$, els $n$ nivells $j \in \left\{ \frac{1}{2}, \ldots, n - \frac{1}{2} \right\}$ són multiplet f.s.} |
| 131 | |
| 132 | \hrulefilll |
| 133 | |
| 134 | \section{Miscel·lània} |
| 135 | |
| 136 | $\int_0^\infty x^n e^{-ax} \, dx = \frac{\Gamma(n + 1)}{a^{n + 1}}$, on $\Gamma(n + 1) = n!$ si $n \in \mathbb{N}$. |
| 137 | |
| 138 | \underline{Coordenades esfèriques}: $\begin{cases} |
| 139 | x = r \sin \theta \cos \phi, \\ |
| 140 | y = r \sin \theta \sin \phi, \\ |
| 141 | z = r \cos \theta. |
| 142 | \end{cases}$ |
| 143 | |
| 144 | \underline{Capes}: K ($n = 1$), L ($n = 2$), M ($n = 3$), N ($n = 4$), ... |
| 145 | |
| 146 | \underline{Subcapes}: s ($l = 0$), p ($l = 1$), d ($l = 2$), f ($l = 3$), ... |
| 147 | \end{multicols*} |
| 148 | \end{document} |