blob: aaae981e135fb625cc4cfc066d1dc7bfdcee47c7 [file] [log] [blame]
Adrià Vilanova Martínezce8597a2021-09-21 18:26:59 +02001\documentclass[a4paper,11pt]{article}
2
3\usepackage[portrait,margin=0.5in,top=0.5in,bottom=0.5in]{geometry}
4\usepackage{amsmath,multicol,siunitx,amsfonts,adjustbox}
5\usepackage[tiny]{titlesec}
6\usepackage[version=4]{mhchem}
7\usepackage[overload]{abraces}
8
9\usepackage[utf8]{inputenc}
10\usepackage[spanish]{babel}
11\titlespacing{\section}{0pt}{5pt}{0pt}
12\titlespacing{\subsection}{0pt}{5pt}{0pt}
13\titlespacing{\subsubsection}{0pt}{5pt}{0pt}
14\setlength{\parindent}{0pt}
15\setlength{\parskip}{.5em}
16\pagenumbering{gobble}
17\setlength{\columnseprule}{1pt}
18
19\newcommand{\forceindent}{\leavevmode{\parindent=1em\indent}}
20
21\title{\vspace{-1em} Formulari Física Estadística}
22\author{Adrià Vilanova Martínez}
23\date{}
24
25\def\dbar{{\mathchar'26\mkern-12mu d}}
26\everymath{\displaystyle}
27\DeclareSIUnit{\atmosphere}{atm}
28\def\hrulefilll{\leavevmode\leaders\hrule height 1.4pt\hfill\kern 0pt}
29\def\hrulefillll{\leavevmode\leaders\hrule height 2.1pt\hfill\kern 0pt}
30
31\begin{document}
32 \maketitle
33
34 \begin{multicols*}{3}
35 \section{Microcanonical ensemble $(N, V, E)$}
36
37 \subsection{Introduction}
38
39 $S = K_b \log \Omega$.
40
41 \underline{Basic relations:}
42
43 \begin{adjustbox}{width=\textwidth/3}
44 $\begin{array}{cc}
45 \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_{N, V} & \frac{P}{T} = \left( \frac{\partial S}{\partial V} \right)_{E, N} \\
46 \mu = - T \left( \frac{\partial S}{\partial N} \right)_{E, V} & C(T) = \frac{\partial E}{\partial T}
47 \end{array}$
48 \end{adjustbox}
49
50 \underline{Potentials:} $\begin{cases}
51 F = E - TS, \\
52 G = F + PV, \\
53 H = E + PV
54 \end{cases}$
55
56 \subsection{Ideal gas}
57
58 $H(\vec{q}, \vec{p}) = \sum_{i = 1}^N H_i(\vec{q_i}, \vec{p_i}) = \sum_{i = 1}^N \frac{p_i^2}{2m}$
59
60 %$H_i(\vec{q_i}, \vec{p_i}) \, \psi_{\vec{n_i}} = \varepsilon_{\vec{n_i}} \, \psi_{\vec{n_i}}$
61
62 $PV = \frac{2}{3} E$ (valid for ideal classic and quantum gasses)
63
64 For a reversible adiabatic process the entropy is constant, and thus: $PV^{\frac{5}{3}} = \text{const.}$
65
66 $C_V = \frac{3}{2} N K_B$, $C_P = \frac{5}{2} N K_B$
67
68 $\mu = K_B T \log\left( \frac{N \lambda^3}{V} \right)$
69
70 $\lambda = \sqrt{\frac{h^2}{2 \pi m K_B T}}$
71
72 $\begin{array}{l}
73 S(E, N, V) = \frac{3}{2} N K_B \left( - \log(\lambda) \right. \\
74 \left. + \frac{2}{3} \log\left( \frac{V}{N} \right) + \frac{5}{3} \right)
75 \end{array}$
76
77 \section{Canonical ensemble $(N, V, T)$}
78
79 \underline{Partition function:}
80
81 $Z = \sum_{E_i} \Omega(E_i) e^{- \beta E_i}$
82
83 $P(E_i) = \frac{1}{Z} \Omega(E_i) e^{- \beta E_i}$
84
85 $\langle E \rangle = - \left( \frac{\partial \log Z}{\partial \beta} \right)_{N, V}$
86
87 $\sigma_E = \sqrt{K_B T^2 C_v}$
88
89 $F = - K_B T \log Z$
90
91 \underline{Thermodynamic relations:}
92
93 $\begin{array}{ll}
94 P = - \left( \frac{\partial F}{\partial V} \right)_{T, N} & S = \left( \frac{\partial F}{\partial T} \right)_{V, N} \\
95 \mu = \left( \frac{\partial F}{\partial N} \right)_{T, V}
96 \end{array}$
97
98 \underline{Identical part.:} $Z(N) = \frac{[Z(1)]^N}{N!}$
99
100 \underline{Localized part.:} $Z(N) = [Z(1)]^N$
101
102 \underline{Single-particle partition function:}
103 $Z(1) = \frac{1}{h^3} \int e^{- \beta H(\vec{q_i}, \vec{p_i})} d\vec{q_i} d\vec{p_i}$
104
105 \underline{Equipartition theorem:} $\langle x_i \cdot \frac{\partial H}{\partial x_j} \rangle = K_B T \delta_{ij}$
106
107 $H = \sum_{i = 1}^n a_i x_i^{\eta_i} \Rightarrow E = K_B T \sum_{i = 1}^{6n} \frac{1}{\eta_i}$
108
109 \section{Grand canonical ensemble $(\mu, V, T)$}
110
111 $Q = \sum_{N = 0}^\infty \sum_E \Omega(N, E) e^{- \beta (E - \mu N)}$
112
113 $P(E, N) = \frac{1}{Q} \Omega(N, E) e^{- \beta (E - \mu N)}$
114
115 \underline{Fugacity:} $z := e^{\beta \mu}$
116
117 $Q = \sum_{N = 0}^\infty z^N \sum_E \Omega(N, E) e^{- \beta E} = \sum_{N = 0}^\infty z^N Z(N)$
118
119 \begin{adjustbox}{width=\textwidth/3}
120 $\begin{cases}
121 Z(N) = \frac{1}{N!} [Z(1)]^N \implies Q = e^{z Z(1)} \\
122 Z(N) = [Z(1)]^N \implies Q = \frac{1}{1 - z Z(1)} \\
123 \end{cases}$
124 \end{adjustbox}
125
126 $\alpha = - \beta \mu$
127
128 $\langle E \rangle = - \left( \frac{\partial \log Q}{\partial \beta} \right)_{\alpha, V}$
129
130 \begin{adjustbox}{width=\textwidth/3}
131 $\sigma_E^2 = \left( \frac{\partial^2 \log Q}{\partial \beta^2} \right)_{\alpha, V} = - \left( \frac{\partial \langle E \rangle}{\partial \beta} \right)_{\alpha, V}$
132 \end{adjustbox}
133
134 \begin{adjustbox}{width=\textwidth/3}
135 $\langle N \rangle = - \left( \frac{\partial \log Q}{\partial \alpha} \right)_{\beta, V} = z \left( \frac{\partial \log Q}{\partial z} \right)_{T, V}$
136 \end{adjustbox}
137
138 \begin{adjustbox}{width=\textwidth/3}
139 $\sigma_N^2 = \left( \frac{\partial^2 \log Q}{\partial \alpha^2} \right)_{\beta, V} = - \left( \frac{\partial \langle N \rangle}{\partial \alpha} \right)_{\beta, V}$
140 \end{adjustbox}
141
142 $\Xi = U - TS - \mu N = - K_B T \log Q$
143
144 \underline{Thermodynamic relations:}
145
146 $\begin{array}{ll}
147 PV = - \Xi & N = - \left( \frac{\partial \Xi}{\partial \mu} \right)_{T, V} \\
148 S = - \left( \frac{\partial \Xi}{\partial T} \right)_{V, \mu}
149 \end{array}$
150
151 (isolating $\mu$ from the first 2 eqs. we get the eq. of state)
152
153 \section{Quantum statistical mechanics}
154
155 $E_k = \sum_i n_i \varepsilon_i$, $Z = \sum_k e^{- \beta E_k}$
156
157 $Z = \sum_{\{ n_i \}} f(\{ n_i \}) e^{- \beta E_k}$
158
159 Distinguishable: $g(\{ n_i \}) = \frac{N!}{n_1! n_2! \cdots n_N!}$
160
161 Indistinguishable: $g(\{ n_i \}) = 1$
162
163 $Q = \prod_i \sum_{n_i = 0}^{n_{i, max}} (z e^{- \beta \varepsilon_i})^{n_i}$
164
165 \section{Miscelanea}
166
167 \underline{Vol($d$-sphere):}
168 $V_d(R) = \frac{\pi^{\frac{d}{2}} R^d}{\Gamma\left( 1 + \frac{d}{2} \right)}$
169
170 \underline{Stirling:} $\log n! \approx n \log n - n$
171
172 $\sum_{n = 0}^N x^n = \frac{x^{N + 1} - 1}{x - 1}$
173
174 \end{multicols*}
175\end{document}