Copybara | 854996b | 2021-09-07 19:36:02 +0000 | [diff] [blame^] | 1 | # Copyright 2018 The Chromium Authors. All rights reserved. |
| 2 | # Use of this source code is governed by a BSD-style |
| 3 | # license that can be found in the LICENSE file or at |
| 4 | # https://developers.google.com/open-source/licenses/bsd |
| 5 | |
| 6 | from __future__ import absolute_import |
| 7 | from __future__ import division |
| 8 | from __future__ import print_function |
| 9 | |
| 10 | import csv |
| 11 | import os |
| 12 | import re |
| 13 | import StringIO |
| 14 | import sys |
| 15 | import tensorflow as tf |
| 16 | import time |
| 17 | |
| 18 | from googleapiclient import discovery |
| 19 | from googleapiclient import errors |
| 20 | from oauth2client.client import GoogleCredentials |
| 21 | import google |
| 22 | from google.cloud.storage import blob, bucket, client |
| 23 | |
| 24 | import trainer.ml_helpers |
| 25 | import trainer.dataset |
| 26 | |
| 27 | |
| 28 | TOP_WORDS = 'topwords.txt' |
| 29 | STOP_WORDS = 'stopwords.txt' |
| 30 | |
| 31 | |
| 32 | def fetch_stop_words(project_id, objects): |
| 33 | request = objects.get_media(bucket=project_id + '-mlengine', |
| 34 | object=STOP_WORDS) |
| 35 | response = trainer.dataset.make_api_request(request) |
| 36 | return response.split() |
| 37 | |
| 38 | |
| 39 | def fetch_training_csv(filepath, objects, b): |
| 40 | request = objects.get_media(bucket=b, object=filepath) |
| 41 | return trainer.dataset.make_api_request(request) |
| 42 | |
| 43 | |
| 44 | def GenerateTopWords(objects, word_dict, project_id): |
| 45 | stop_words = fetch_stop_words(project_id, objects) |
| 46 | sorted_words = sorted(word_dict, key=word_dict.get, reverse=True) |
| 47 | |
| 48 | top_words = [] |
| 49 | index = 0 |
| 50 | |
| 51 | while len(top_words) < trainer.ml_helpers.COMPONENT_FEATURES: |
| 52 | if sorted_words[index] not in stop_words: |
| 53 | top_words.append(sorted_words[index]) |
| 54 | index += 1 |
| 55 | |
| 56 | return top_words |
| 57 | |
| 58 | |
| 59 | def make_top_words_list(job_dir): |
| 60 | """Returns the top (most common) words in the entire dataset for component |
| 61 | prediction. If a file is already stored in GCS containing these words, the |
| 62 | words from the file are simply returned. Otherwise, the most common words are |
| 63 | determined and written to GCS, before being returned. |
| 64 | |
| 65 | Returns: |
| 66 | A list of the most common words in the dataset (the number of them |
| 67 | determined by ml_helpers.COMPONENT_FEATURES). |
| 68 | """ |
| 69 | |
| 70 | credentials = GoogleCredentials.get_application_default() |
| 71 | storage = discovery.build('storage', 'v1', credentials=credentials) |
| 72 | objects = storage.objects() |
| 73 | |
| 74 | subpaths = re.match('gs://(monorail-.*)-mlengine/(component_trainer_\d+)', |
| 75 | job_dir) |
| 76 | |
| 77 | if subpaths: |
| 78 | project_id = subpaths.group(1) |
| 79 | trainer_folder = subpaths.group(2) |
| 80 | else: |
| 81 | project_id = 'monorail-prod' |
| 82 | |
| 83 | storage_bucket = project_id + '.appspot.com' |
| 84 | request = objects.list(bucket=storage_bucket, |
| 85 | prefix='component_training_data') |
| 86 | |
| 87 | response = trainer.dataset.make_api_request(request) |
| 88 | |
| 89 | items = response.get('items') |
| 90 | csv_filepaths = [b.get('name') for b in items] |
| 91 | |
| 92 | final_string = '' |
| 93 | |
| 94 | for word in parse_words(csv_filepaths, objects, storage_bucket, project_id): |
| 95 | final_string += word + '\n' |
| 96 | |
| 97 | if subpaths: |
| 98 | client_obj = client.Client(project=project_id) |
| 99 | bucket_obj = bucket.Bucket(client_obj, project_id + '-mlengine') |
| 100 | |
| 101 | bucket_obj.blob = google.cloud.storage.blob.Blob(trainer_folder |
| 102 | + '/' |
| 103 | + TOP_WORDS, |
| 104 | bucket_obj) |
| 105 | bucket_obj.blob.upload_from_string(final_string, |
| 106 | content_type='text/plain') |
| 107 | return final_string.split() |
| 108 | |
| 109 | |
| 110 | def parse_words(files, objects, b, project_id): |
| 111 | word_dict = {} |
| 112 | |
| 113 | csv.field_size_limit(sys.maxsize) |
| 114 | for filepath in files: |
| 115 | media = fetch_training_csv(filepath, objects, b) |
| 116 | |
| 117 | for row in csv.reader(StringIO.StringIO(media)): |
| 118 | _, content = row |
| 119 | words = content.split() |
| 120 | |
| 121 | for word in words: |
| 122 | if word in word_dict: |
| 123 | word_dict[word] += 1 |
| 124 | else: |
| 125 | word_dict[word] = 1 |
| 126 | |
| 127 | return GenerateTopWords(objects, word_dict, project_id) |