blob: dc5e7159ee2db270c879a1a7a6c8b27c44039263 [file] [log] [blame]
# Copyright 2016 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file or at
# https://developers.google.com/open-source/licenses/bsd
""" Tasks and handlers for maintaining the spam classifier model. These
should be run via cron and task queue rather than manually.
"""
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import csv
import logging
import webapp2
import cloudstorage
import json
from datetime import date
from datetime import datetime
from datetime import timedelta
from google.appengine.api import app_identity
from framework import cloud_tasks_helpers
from framework import gcs_helpers
from framework import servlet
from framework import urls
class TrainingDataExport(webapp2.RequestHandler):
"""Trigger a training data export task"""
def get(self):
task = cloud_tasks_helpers.generate_simple_task(
urls.SPAM_DATA_EXPORT_TASK + '.do', {})
cloud_tasks_helpers.create_task(task)
BATCH_SIZE = 1000
class TrainingDataExportTask(servlet.Servlet):
"""Export any human-labeled ham or spam from the previous day. These
records will be used by a subsequent task to create an updated model.
"""
CHECK_SECURITY_TOKEN = False
def ProcessFormData(self, mr, post_data):
logging.info("Training data export initiated.")
bucket_name = app_identity.get_default_gcs_bucket_name()
date_str = date.today().isoformat()
export_target_path = '/' + bucket_name + '/spam_training_data/' + date_str
total_issues = 0
with cloudstorage.open(export_target_path, mode='w',
content_type=None, options=None, retry_params=None) as gcs_file:
csv_writer = csv.writer(gcs_file, delimiter=',', quotechar='"',
quoting=csv.QUOTE_ALL, lineterminator='\n')
since = datetime.now() - timedelta(days=7)
# TODO: Further pagination.
issues, first_comments, _count = (
self.services.spam.GetTrainingIssues(
mr.cnxn, self.services.issue, since, offset=0, limit=BATCH_SIZE))
total_issues += len(issues)
for issue in issues:
# Cloud Prediction API doesn't allow newlines in the training data.
fixed_summary = issue.summary.replace('\r\n', ' ')
fixed_comment = first_comments[issue.issue_id].replace('\r\n', ' ')
email = self.services.user.LookupUserEmail(mr.cnxn, issue.reporter_id)
csv_writer.writerow([
'spam' if issue.is_spam else 'ham',
fixed_summary.encode('utf-8'), fixed_comment.encode('utf-8'), email,
])
comments = (
self.services.spam.GetTrainingComments(
mr.cnxn, self.services.issue, since, offset=0, limit=BATCH_SIZE))
total_comments = len(comments)
for comment in comments:
# Cloud Prediction API doesn't allow newlines in the training data.
fixed_comment = comment.content.replace('\r\n', ' ')
email = self.services.user.LookupUserEmail(mr.cnxn, comment.user_id)
csv_writer.writerow([
'spam' if comment.is_spam else 'ham',
# Comments don't have summaries, so it's blank:
'', fixed_comment.encode('utf-8'), email
])
self.response.body = json.dumps({
"exported_issue_count": total_issues,
"exported_comment_count": total_comments,
})