Adrià Vilanova MartÃnez | 8e1c8c3 | 2022-01-09 17:04:39 +0100 | [diff] [blame] | 1 | % !TEX root = main.tex |
| 2 | |
| 3 | \newcommand*\circled[1]{\tikz[baseline=(char.base)]{ |
| 4 | \node[shape=circle,draw,inner sep=2pt] (char) {#1};}} |
| 5 | |
| 6 | \chapter{Labeled combinatorial classes} |
| 7 | \section{Introduction} |
| 8 | |
| 9 | \begin{defi} |
| 10 | Let $a = (a_0, a_1, \ldots)$. Then, the \underline{EGF} of $a$ is: |
| 11 | \[ A(z) = \sum_{n \geq 0} \frac{a_n}{n!} z^n. \] |
| 12 | \end{defi} |
| 13 | |
| 14 | \begin{obs} |
| 15 | Observe that if $A(z)$ and $B(z)$ are EGF of $a$ and $b$, then: |
| 16 | |
| 17 | \begin{itemize} |
| 18 | \item $\mathcal{C}(z) = A(z) + B(z)$ is the EGF of $a + b$. |
| 19 | \item $\mathcal{C}(z) = A(z) \cdot B(z)$ is the EGF of $c_n = \sum \binom{n}{k} a_k b_{n - k}$ (the binomial convolution). |
| 20 | \end{itemize} |
| 21 | \end{obs} |
| 22 | |
| 23 | \begin{defi} |
| 24 | A combinatorial class $A$ is \underline{labeled} if the objects are classes of graphs (directed graphs). The size of an object is the number of nodes. |
| 25 | |
| 26 | The nodes of a graph with $n$ nodes are labelled with $\{ 1, 2, \ldots n \}$. |
| 27 | \end{defi} |
| 28 | |
| 29 | \begin{example}[Class of urns] |
| 30 | Let $\mathcal{U}$ be the class of edgeless labeled graphs. Then: |
| 31 | \[ \mathcal{U} = \{ \varepsilon, \circled{1}, \circled{1} \circled{2}, \circled{1} \circled{2} \circled{3}, \ldots \}. \] |
| 32 | The EFG is: |
| 33 | \[ U(z) = \sum_{n \geq 0} \frac{z^n}{n!} = e^z. \] |
| 34 | \end{example} |
| 35 | |
| 36 | \begin{example}[Class of permutations] |
| 37 | Let $\mathcal{P}$ be the class of directed paths: |
| 38 | \[ \mathcal{P} = \{ \varepsilon, \circled{1}, \circled{1} \rightarrow \circled{2}, \circled{2} \rightarrow \circled{1}, \circled{1} \rightarrow \circled{2} \rightarrow \circled{3}, \ldots \}. \] |
| 39 | The EFG is: |
| 40 | \[ A(z) = \sum_{n \geq 0} z^n = \frac{1}{1 - z}. \] |
| 41 | \end{example} |
| 42 | |
| 43 | \begin{example}[Class of cycles] |
| 44 | Let $\mathcal{C}$ be the class of directed cycles. Then, $c_n = \frac{n!}{n} = (n - 1)!$, so the EFG is: |
| 45 | \[ A(z) = \sum_{n \geq 0} \frac{z^n}{n} = - \log (1 - z). \] |
| 46 | \end{example} |
| 47 | |
| 48 | \section{Operations on labeled classes} |
| 49 | \begin{defi} |
| 50 | The \underline{sum} $\mathcal{C} = A + B$ is such that its EGF is $C(z) = A(z) + B(z)$. |
| 51 | \end{defi} |
| 52 | |
| 53 | \begin{defi} |
| 54 | The \underline{labeled product} $\mathcal{C} = A * B = \{ \alpha * \beta : (\alpha, \beta) \in A \times B \}$, where |
| 55 | \[ \alpha * \beta = \left\{ (\alpha', \beta') : \substack{ |
| 56 | \alpha' \text{ labeled with } |\alpha| \text{ numbers in } [|\alpha| + |\beta|] \\ |
| 57 | \beta' \text{ labeled with } |\beta| \text{ numbers in } [|\alpha| + |\beta|] |
| 58 | } : \rho(\alpha') = \alpha, \rho(\beta') = \beta \right\}, \] |
| 59 | with $\rho(d)$ being the reduction of sequence $d$. |
| 60 | |
| 61 | Its EFG is $C(z) = A(z) \cdot B(z)$. |
| 62 | \end{defi} |
| 63 | |
| 64 | \begin{defi} |
| 65 | The \underline{sequence} of a labeled class is $\mathcal{C} = \text{SEQ}(A) = \varepsilon + A + A * A + A * A * A + \ldots$, whose EFG is $C(z) = \frac{1}{1 - A(z)}$. |
| 66 | \end{defi} |
| 67 | |
| 68 | \begin{defi} |
| 69 | The \underline{set} of a labeled class is |
| 70 | \[ \mathcal{C} = \text{SET}(A) = \cup_k \text{SET}(A, \text{card} = k), \] |
| 71 | with |
| 72 | \[ \text{SET}(A, \text{card} = k) = \frac{\overbrace{A * A * \cdots * A}^{k}}{\sim} \] |
| 73 | where $\sim$ is the equivalence relation ``up to ordering''. Every equivalence class of an ordered object has $k!$ elements. Thus, the EFG is: |
| 74 | \[ C(z) = e^{A(z)}. \] |
| 75 | \end{defi} |
| 76 | |
| 77 | \begin{example}[Class of permutations] |
| 78 | \[ \mathcal{P} = \Set(\mathcal{C}). \] |
| 79 | \end{example} |
| 80 | |
| 81 | \begin{example}[Class of derangements] |
| 82 | Let $\mathcal{D}$ be the class of permutations with no fixed points (derangements). Then: |
| 83 | \[ D = \Set(\mathcal{C} - \mathcal{C}_1), \quad d_n = n! \sum_{k = 1}^n \frac{(-1)^k}{k!}. \] |
| 84 | \end{example} |
| 85 | |
| 86 | \begin{example}[Class of convolutions] |
| 87 | Let $\Gamma$ be the class of convolutions: $\{ \sigma \in \mathcal{S}_n : \sigma^2 = Id \}$. Then: |
| 88 | \[ \Gamma = \Set(\mathcal{C}_1 + \mathcal{C}_2), \quad I(z) = e^z e^{z^2/2}, \quad I_n = \sum_{k = 0}^{\lfloor n/2 \rfloor} \frac{n!}{k! (n - 2k)! 2^k}. \] |
| 89 | \end{example} |
| 90 | |
| 91 | \begin{example}[Class of permutations with $k$ cycles] |
| 92 | Let $P^{(k)}$ be such class. Then: |
| 93 | \[ P^{(k)} = \Set(\mathcal{C}, \text{card} = k), \quad P_n^{(k)} = \stirlingfirst{n}{k}. \] |
| 94 | \end{example} |
| 95 | |
| 96 | \begin{defi} |
| 97 | The \underline{Stirling number of the first kind} (signless stirling number) is: |
| 98 | \[ \stirlingfirst{n}{k} := \frac{n!}{k!} \sum_{\substack{i_1 + \ldots + i_k = n \\ i_1, \ldots, i_k \geq 1}} \frac{1}{i_1 \cdot \cdots \cdot i_k}. \] |
| 99 | \end{defi} |
| 100 | |
| 101 | \begin{obs} |
| 102 | Observe that, if we separate the cases in which $n + 1$ is not or is a single cycle, then: |
| 103 | \[ \stirlingfirst{n + 1}{k} = n \cdot \stirlingfirst{n}{k} + \stirlingfirst{n}{k - 1}. \] |
| 104 | \end{obs} |
| 105 | |
| 106 | \section{Set partitions} |
| 107 | \[ \mathcal{P} = \Set(\mathcal{U} - \varepsilon), \quad p_n = B_n = \sum_{k = 1}^n \stirlingsec{n}{k} = \frac{1}{e} \sum_{k \geq 0} \frac{k^n}{k!}. \] |
| 108 | |
| 109 | \begin{example}[Partitions of a set into $k$ parts] |
| 110 | Let's revisit this example. We have |
| 111 | \[ \mathcal{P}^{(k)} = \Set(\mathcal{U} - \varepsilon, \text{card} = k), \quad P_n^{(k)} = \stirlingsec{n}{k}. \] |
| 112 | \end{example} |