Adrià Vilanova Martínez | ce8597a | 2021-09-21 18:26:59 +0200 | [diff] [blame] | 1 | \documentclass[a4paper,11pt]{article} |
| 2 | |
| 3 | \usepackage[portrait,margin=0.5in,top=0.5in,bottom=0.5in]{geometry} |
| 4 | \usepackage{amsmath,multicol,siunitx,amsfonts,adjustbox} |
| 5 | \usepackage[tiny]{titlesec} |
| 6 | \usepackage[version=4]{mhchem} |
| 7 | \usepackage[overload]{abraces} |
| 8 | |
| 9 | \usepackage[utf8]{inputenc} |
| 10 | \usepackage[spanish]{babel} |
| 11 | \titlespacing{\section}{0pt}{5pt}{0pt} |
| 12 | \titlespacing{\subsection}{0pt}{5pt}{0pt} |
| 13 | \titlespacing{\subsubsection}{0pt}{5pt}{0pt} |
| 14 | \setlength{\parindent}{0pt} |
| 15 | \setlength{\parskip}{.5em} |
| 16 | \pagenumbering{gobble} |
| 17 | \setlength{\columnseprule}{1pt} |
| 18 | |
| 19 | \newcommand{\forceindent}{\leavevmode{\parindent=1em\indent}} |
| 20 | |
| 21 | \title{\vspace{-1em} Formulari Física Estadística} |
| 22 | \author{Adrià Vilanova Martínez} |
| 23 | \date{} |
| 24 | |
| 25 | \def\dbar{{\mathchar'26\mkern-12mu d}} |
| 26 | \everymath{\displaystyle} |
| 27 | \DeclareSIUnit{\atmosphere}{atm} |
| 28 | \def\hrulefilll{\leavevmode\leaders\hrule height 1.4pt\hfill\kern 0pt} |
| 29 | \def\hrulefillll{\leavevmode\leaders\hrule height 2.1pt\hfill\kern 0pt} |
| 30 | |
| 31 | \begin{document} |
| 32 | \maketitle |
| 33 | |
| 34 | \begin{multicols*}{3} |
| 35 | \section{Microcanonical ensemble $(N, V, E)$} |
| 36 | |
| 37 | \subsection{Introduction} |
| 38 | |
| 39 | $S = K_b \log \Omega$. |
| 40 | |
| 41 | \underline{Basic relations:} |
| 42 | |
| 43 | \begin{adjustbox}{width=\textwidth/3} |
| 44 | $\begin{array}{cc} |
| 45 | \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_{N, V} & \frac{P}{T} = \left( \frac{\partial S}{\partial V} \right)_{E, N} \\ |
| 46 | \mu = - T \left( \frac{\partial S}{\partial N} \right)_{E, V} & C(T) = \frac{\partial E}{\partial T} |
| 47 | \end{array}$ |
| 48 | \end{adjustbox} |
| 49 | |
| 50 | \underline{Potentials:} $\begin{cases} |
| 51 | F = E - TS, \\ |
| 52 | G = F + PV, \\ |
| 53 | H = E + PV |
| 54 | \end{cases}$ |
| 55 | |
| 56 | \subsection{Ideal gas} |
| 57 | |
| 58 | $H(\vec{q}, \vec{p}) = \sum_{i = 1}^N H_i(\vec{q_i}, \vec{p_i}) = \sum_{i = 1}^N \frac{p_i^2}{2m}$ |
| 59 | |
| 60 | %$H_i(\vec{q_i}, \vec{p_i}) \, \psi_{\vec{n_i}} = \varepsilon_{\vec{n_i}} \, \psi_{\vec{n_i}}$ |
| 61 | |
| 62 | $PV = \frac{2}{3} E$ (valid for ideal classic and quantum gasses) |
| 63 | |
| 64 | For a reversible adiabatic process the entropy is constant, and thus: $PV^{\frac{5}{3}} = \text{const.}$ |
| 65 | |
| 66 | $C_V = \frac{3}{2} N K_B$, $C_P = \frac{5}{2} N K_B$ |
| 67 | |
| 68 | $\mu = K_B T \log\left( \frac{N \lambda^3}{V} \right)$ |
| 69 | |
| 70 | $\lambda = \sqrt{\frac{h^2}{2 \pi m K_B T}}$ |
| 71 | |
| 72 | $\begin{array}{l} |
| 73 | S(E, N, V) = \frac{3}{2} N K_B \left( - \log(\lambda) \right. \\ |
| 74 | \left. + \frac{2}{3} \log\left( \frac{V}{N} \right) + \frac{5}{3} \right) |
| 75 | \end{array}$ |
| 76 | |
| 77 | \section{Canonical ensemble $(N, V, T)$} |
| 78 | |
| 79 | \underline{Partition function:} |
| 80 | |
| 81 | $Z = \sum_{E_i} \Omega(E_i) e^{- \beta E_i}$ |
| 82 | |
| 83 | $P(E_i) = \frac{1}{Z} \Omega(E_i) e^{- \beta E_i}$ |
| 84 | |
| 85 | $\langle E \rangle = - \left( \frac{\partial \log Z}{\partial \beta} \right)_{N, V}$ |
| 86 | |
| 87 | $\sigma_E = \sqrt{K_B T^2 C_v}$ |
| 88 | |
| 89 | $F = - K_B T \log Z$ |
| 90 | |
| 91 | \underline{Thermodynamic relations:} |
| 92 | |
| 93 | $\begin{array}{ll} |
| 94 | P = - \left( \frac{\partial F}{\partial V} \right)_{T, N} & S = \left( \frac{\partial F}{\partial T} \right)_{V, N} \\ |
| 95 | \mu = \left( \frac{\partial F}{\partial N} \right)_{T, V} |
| 96 | \end{array}$ |
| 97 | |
| 98 | \underline{Identical part.:} $Z(N) = \frac{[Z(1)]^N}{N!}$ |
| 99 | |
| 100 | \underline{Localized part.:} $Z(N) = [Z(1)]^N$ |
| 101 | |
| 102 | \underline{Single-particle partition function:} |
| 103 | $Z(1) = \frac{1}{h^3} \int e^{- \beta H(\vec{q_i}, \vec{p_i})} d\vec{q_i} d\vec{p_i}$ |
| 104 | |
| 105 | \underline{Equipartition theorem:} $\langle x_i \cdot \frac{\partial H}{\partial x_j} \rangle = K_B T \delta_{ij}$ |
| 106 | |
| 107 | $H = \sum_{i = 1}^n a_i x_i^{\eta_i} \Rightarrow E = K_B T \sum_{i = 1}^{6n} \frac{1}{\eta_i}$ |
| 108 | |
| 109 | \section{Grand canonical ensemble $(\mu, V, T)$} |
| 110 | |
| 111 | $Q = \sum_{N = 0}^\infty \sum_E \Omega(N, E) e^{- \beta (E - \mu N)}$ |
| 112 | |
| 113 | $P(E, N) = \frac{1}{Q} \Omega(N, E) e^{- \beta (E - \mu N)}$ |
| 114 | |
| 115 | \underline{Fugacity:} $z := e^{\beta \mu}$ |
| 116 | |
| 117 | $Q = \sum_{N = 0}^\infty z^N \sum_E \Omega(N, E) e^{- \beta E} = \sum_{N = 0}^\infty z^N Z(N)$ |
| 118 | |
| 119 | \begin{adjustbox}{width=\textwidth/3} |
| 120 | $\begin{cases} |
| 121 | Z(N) = \frac{1}{N!} [Z(1)]^N \implies Q = e^{z Z(1)} \\ |
| 122 | Z(N) = [Z(1)]^N \implies Q = \frac{1}{1 - z Z(1)} \\ |
| 123 | \end{cases}$ |
| 124 | \end{adjustbox} |
| 125 | |
| 126 | $\alpha = - \beta \mu$ |
| 127 | |
| 128 | $\langle E \rangle = - \left( \frac{\partial \log Q}{\partial \beta} \right)_{\alpha, V}$ |
| 129 | |
| 130 | \begin{adjustbox}{width=\textwidth/3} |
| 131 | $\sigma_E^2 = \left( \frac{\partial^2 \log Q}{\partial \beta^2} \right)_{\alpha, V} = - \left( \frac{\partial \langle E \rangle}{\partial \beta} \right)_{\alpha, V}$ |
| 132 | \end{adjustbox} |
| 133 | |
| 134 | \begin{adjustbox}{width=\textwidth/3} |
| 135 | $\langle N \rangle = - \left( \frac{\partial \log Q}{\partial \alpha} \right)_{\beta, V} = z \left( \frac{\partial \log Q}{\partial z} \right)_{T, V}$ |
| 136 | \end{adjustbox} |
| 137 | |
| 138 | \begin{adjustbox}{width=\textwidth/3} |
| 139 | $\sigma_N^2 = \left( \frac{\partial^2 \log Q}{\partial \alpha^2} \right)_{\beta, V} = - \left( \frac{\partial \langle N \rangle}{\partial \alpha} \right)_{\beta, V}$ |
| 140 | \end{adjustbox} |
| 141 | |
| 142 | $\Xi = U - TS - \mu N = - K_B T \log Q$ |
| 143 | |
| 144 | \underline{Thermodynamic relations:} |
| 145 | |
| 146 | $\begin{array}{ll} |
| 147 | PV = - \Xi & N = - \left( \frac{\partial \Xi}{\partial \mu} \right)_{T, V} \\ |
| 148 | S = - \left( \frac{\partial \Xi}{\partial T} \right)_{V, \mu} |
| 149 | \end{array}$ |
| 150 | |
| 151 | (isolating $\mu$ from the first 2 eqs. we get the eq. of state) |
| 152 | |
| 153 | \section{Quantum statistical mechanics} |
| 154 | |
| 155 | $E_k = \sum_i n_i \varepsilon_i$, $Z = \sum_k e^{- \beta E_k}$ |
| 156 | |
| 157 | $Z = \sum_{\{ n_i \}} f(\{ n_i \}) e^{- \beta E_k}$ |
| 158 | |
| 159 | Distinguishable: $g(\{ n_i \}) = \frac{N!}{n_1! n_2! \cdots n_N!}$ |
| 160 | |
| 161 | Indistinguishable: $g(\{ n_i \}) = 1$ |
| 162 | |
| 163 | $Q = \prod_i \sum_{n_i = 0}^{n_{i, max}} (z e^{- \beta \varepsilon_i})^{n_i}$ |
| 164 | |
| 165 | \section{Miscelanea} |
| 166 | |
| 167 | \underline{Vol($d$-sphere):} |
| 168 | $V_d(R) = \frac{\pi^{\frac{d}{2}} R^d}{\Gamma\left( 1 + \frac{d}{2} \right)}$ |
| 169 | |
| 170 | \underline{Stirling:} $\log n! \approx n \log n - n$ |
| 171 | |
| 172 | $\sum_{n = 0}^N x^n = \frac{x^{N + 1} - 1}{x - 1}$ |
| 173 | |
| 174 | \end{multicols*} |
| 175 | \end{document} |