blob: 80dcbfc84fd4d5053a73ede99648ba2bd258c091 [file] [log] [blame]
Adrià Vilanova Martínezce8597a2021-09-21 18:26:59 +02001\documentclass[11pt,a4paper,dvipsnames]{article}
2\usepackage[utf8]{inputenc}
3
4\input{../preamble.tex}
5
6\title{Homework 5\\Continuum Mechanics}
7\author{Adrià Vilanova Martínez}
8\date{April 25, 2021}
9
10\begin{document}
11
12\maketitle
13
14\begin{Problem}
15 In this problem, we are going to compare the relative importance between stretching and bending a beam. To do this, consider a long beam oriented along the positive z-direction that is clamped on its left-most point. Neglect gravity.
16
17 \begin{enumerate}
18 \item If we apply a stretching force $F_z$ on the right-most point of the beam, show that the displacement at that point can be written as
19 \[ u_z = \frac{F_z}{A} \frac{L}{Y}, \]
20 with $L$ the length of the beam, $A$ the cross-sectional area and $Y$ the Young's modulus.
21
22 \item If we instead apply a downward force (along the Y-direction) $F_y$ on the right-most point of the beam, show that the displacement is
23 \[ u_y(z = L) = \frac{L^3 F_y}{3 Y I} \approx \frac{L^3 F_y}{3 Y A^2}, \]
24 where we have taken $I \approx A^2$ in the last step.
25 \end{enumerate}
26
27 This implies:
28 \[ \left| \frac{u_z}{u_y} \right| \approx \frac{A}{L^2} \left| \frac{F_z}{F_y} \right|. \]
29
30 Hence, for long beams ($A \ll L^2$) and comparable stretching and bending forces ($\left| \frac{F_z}{F_y} \right| \approx 1$), we see that $|u_z| \ll |u_y|$. This imples that the longitudinal displacement is always negligible compared to the transverse (due to bending) displacement.
31\end{Problem}
32
33\textbf{Solution for a):} \\
34We have that $\sigma_{zz} = \frac{F_z}{A} = Y u_{zz}$ by Hooke's law, and all the other components of the stress vector are zero. Therefore, $u_{zz} = \frac{F_z}{A Y}$.
35
36Since $u_{zz} = \frac{d u_z}{dz}$, we have
37\[ u_z = \int_0^R u_{zz} dz = \frac{F_z L}{A Y}. \]
38
39\begin{Problem}
40 Consider a cylindrical beam of length $L$ and cross-sectional radius $R$ oriented along the positive $\hat{e}_z$ direction and made of an isotropic and homogeneous elastic material with Lame coefficients $\lambda$ and $\mu$. We fix the left-most end of the beam, which is located at $z = 0$, such that the diplacement vector in the corresponding cross-section is zero. The other end, located at $z = L$, is subjected to a force (per unit area) $\TT{\sigma} \cdot \hat{e}_Z |_{r = R} = \sigma_L \hat{e}_\phi$, where $\TT{\sigma}$ is the stress tensor, $\sigma_L$ is a constant force per unit area supplied at $r = R$ to the circular cross-section located at $z = L$, and we are using the cylindrical system.
41
42 The resultant deformation results in a displacement vector that increases linearly with $z$, and that, based on the symmetry of the problem, we can write as
43 \[ \vec{u} = (0, u_\phi(r, z), 0) = (0, R(r) Z(z), 0) = R(r) Z(z) \hat{e}_\phi, \]
44 where we have separated the (r, z)-dependence of $u_\phi$ into its r- and z-dependences. You can safely ignore body forces, such as the gravitational force.
45
46 \begin{enumerate}
47 \item Obtain the displacement field in the solid.
48 \item Obtain the strain tensor.
49 \item Obtain the stress tensor.
50 \item What is the total work done by the applied stress?
51 \end{enumerate}
52\end{Problem}
53
54\textbf{Solution for a):} \\
55Since $\vec{u}$ increases linearly with $z$, we have that $Z(z) = az + b$.
56
57In order to find the displacement field, we will use Navier-Cauchy's equation combined with the general expression we have for the displacement field:
58\[ \underbrace{\vec{f}}_{= 0} + \mu \nabla^2 \vec{u} + (\lambda + \mu) \nabla (\nabla \cdot \vec{u}) = 0 \iff \]
59\[ \iff \mu (0, \partial_{rr} u_\phi + \partial_{zz} u_\phi + \frac{1}{r} \partial_r u_\phi - \frac{1}{r^2} u_\phi, 0) + (\lambda + \mu) \cdot 0 = 0 \iff \]
60\[ \iff \partial_{rr} u_\phi + \partial_{zz} u_\phi + \frac{1}{r} \partial_r u_\phi - \frac{1}{r^2} u_\phi = 0 \iff \]
61\[ \iff R''(r) + \frac{1}{r} R'(r) - \frac{1}{r^2} R(r) = 0 \iff \]
62\[ r^2 R''(r) + r R'(r) - R(r) = 0 \]
63
64If we take as an ansatz $R(r) = C \cdot r^k$, we can clearly see that two independent solutions for the ODE which form the basis of the solution space are:
65\[ \left\{ r, \frac{1}{r} \right\}, \]
66and so the general solution for the radial component is:
67\[ R(r) = cr + d \frac{1}{r}. \]
68If we impose that when $u_\phi$ must be bounded near 0, we get that $D = 0$, and so in reality
69\[ R(r) = cr. \]
70We also have that at $z = 0$, $u_\phi = 0 \quad \forall r$ since the beam is fixed, so:
71\[ 0 = u_\phi(0) = R(r) (\cdot A + B) \implies B = 0. \]
72Thus:
73\[ u_\phi = A c r z = E rz, \]
74where $E := Ac$.
75
76\textbf{Solution for b):} \\
77\[ \nabla \vec{u} = \begin{pmatrix}
78 0 & Ez & 0 \\
79 - Ez & 0 & 0 \\
80 0 & Er & 0
81\end{pmatrix} \implies \TT{u} = \frac{1}{2} (\nabla \vec{u} + (\nabla \vec{u})^T) = \frac{1}{2} \begin{pmatrix}
82 0 & 0 & 0 \\
83 0 & 0 & Er \\
84 0 & Er & 0
85\end{pmatrix}. \]
86
87\textbf{Solution for c):} \\
88We can get the stress tensor from the strain tensor via Hooke's law:
89\[ \TT{\sigma} = 2 \mu \TT{u} + \lambda (\Tr \TT{u}) \TT{I}, \]
90but since $\nabla \cdot \vec{u} = 0$, our expression simplifies to:
91\[ \TT{\sigma} = 2 \mu \TT{u} = \begin{pmatrix}
92 0 & 0 & 0 \\
93 0 & 0 & E \mu r \\
94 0 & E \mu r & 0
95\end{pmatrix}. \]
96We are now in good position to impose the boundary condition of the stress tensor at the end of the beam ($z = L$):
97\[ \sigma_L \hat{e}_\phi = [\TT{\sigma} \cdot \hat{e}_z]_{r = R} = \left[ \begin{pmatrix}
98 0 \\
99 \mu E r \\
100 0
101\end{pmatrix} \right]_{r = R} = \mu E R \hat{e}_\phi \implies E = \frac{\sigma_L}{\mu R}. \]
102
103Therefore:
104\[ \vec{u} = \left( 0, \frac{\sigma_L}{\mu R} rz, 0 \right), \]
105\[ \TT{u} = \frac{1}{2} \begin{pmatrix}
106 0 & 0 & 0 \\
107 0 & 0 & \frac{\sigma_L}{\mu R} r \\
108 0 & \frac{\sigma_L}{\mu R} r & 0
109\end{pmatrix}, \]
110\[ \TT{\sigma} = \begin{pmatrix}
111 0 & 0 & 0 \\
112 0 & 0 & \sigma_L \frac{r}{R} \\
113 0 & \sigma_L \frac{r}{R} & 0
114\end{pmatrix}. \]
115
116\textbf{Solution for d):} \\
117We can calculate the elastic energy as:
118\[ u = \frac{1}{2} \TT{\sigma} : \TT{u} = \frac{\sigma_L^2}{2 \mu} \frac{r^2}{R^2}. \]
119Given that $u = \frac{W}{V}$, we can integrate the elastic energy over the entire volume of the beam to find the work done by the applied stress:
120\[ W = \int_V u \, dv = \frac{\sigma_L^2}{2 \mu R^2} \int r^3 d\phi dr dz = \frac{\sigma_L^2}{2 \mu R^2} \frac{2 \phi L}{4 R^2} = \frac{\sigma_L^2 \pi R^2 L}{4 \mu}. \]
121
122\newpage
123
124\begin{Problem}
125 Consider a transverse plane wave, $\vec{u} = \vec{a} \exp[ i(\vec{k} \cdot \vec{r} - \omega t) ]$, propagating through an elastic solid. The solid is homogeneous, isotropic and has Lame coefficients $\lambda$ and $\mu$.
126
127 \begin{enumerate}
128 \item Show that the propagation of these waves does not involve volume changes.
129
130 \item Assume now that the wave propagates along the $\hat{x}$ direction. Calculate the stress tensor and justify why we call these waves, \textit{shear waves}.
131
132 \item Now consider a longitudinal wave. Show that $\curl \vec{u} = 0$. Hint: You may consider using the Levi-Civita symbol.
133 \end{enumerate}
134
135 Assume now that the wave propagates along the $\hat{x}$ direction. Confirm there are no off-diagonal terms in Cauchy's strain tensor. Hence, these waves propagate without shear distorsions; only normal stresses are involved. That's why we often refer to them as \textit{pressure or compressional waves}.
136\end{Problem}
137
138\textbf{Solution for a):} \\
139\[ \nabla \vec{u} = \Tr \vec{\TT{u}} = i \exp[i(\vec{k} \cdot \vec{r} - \omega t)] \vec{a} \cdot \vec{k}, \]
140as we calculate in the following subsection. But since $\vec{a}$ and $\vec{k}$ are orthogonal, we have that $\nabla \vec{u} = 0$, and therefore the volume of the elastic solid remains invariant.
141
142\textbf{Solution for b):} \\
143\[ \TT{u} = \frac{1}{2} [\nabla \vec{u} + (\nabla \vec{u})^t] = i \exp[ i(\vec{k} \cdot \vec{r} - \omega t) ] \frac{1}{2} \begin{pmatrix}
144 2 a_x k_x & a_y k_x + a_x k_y & a_z k_x + a_x k_z \\
145 a_x k_y + a_y k_x & 2 a_y k_y & a_z k_y + a_y k_z \\
146 a_x k_z + a_z k_x & a_y k_z + a_z k_y & 2 a_z k_z
147\end{pmatrix} = \]
148\[ = i \exp[ i(\vec{k} \cdot \vec{r} - \omega t) ] \frac{1}{2} \left[ \begin{pmatrix}
149 k_x \\
150 k_y \\
151 k_z
152\end{pmatrix} \begin{pmatrix}
153 a_x & a_y & a_z
154\end{pmatrix} + \begin{pmatrix}
155 a_x \\
156 a_y \\
157 a_z
158\end{pmatrix} \begin{pmatrix}
159 k_x & k_y & k_z
160\end{pmatrix} \right]. \]
161
162From the previous expression we have that $\Tr (\TT{u}) = i \exp[ i(\vec{k} \cdot \vec{r} - \omega t) ] \vec{k} \cdot \vec{a} = 0$, so by using Hooke's law, we get:
163\[ \TT{\sigma} = i \exp[ i(\vec{k} \cdot \vec{r} - \omega t) ] 2 \mu \left[ \begin{pmatrix}
164 k_x \\
165 k_y \\
166 k_z
167\end{pmatrix} \begin{pmatrix}
168 a_x & a_y & a_z
169\end{pmatrix} + \begin{pmatrix}
170 a_x \\
171 a_y \\
172 a_z
173\end{pmatrix} \begin{pmatrix}
174 k_x & k_y & k_z
175\end{pmatrix} \right]. \]
176
177Due to the fact that $\vec{k} = k \hat{x}$, so $k_y = k_z = 0$, we get:
178\[ \TT{\sigma} = i \exp[ i(\vec{k} \cdot \vec{r} - \omega t) ] \mu \begin{pmatrix}
179 0 & a_y k_x & a_z k_x \\
180 a_y k_x & 0 & 0 \\
181 a_z k_x & 0 & 0
182\end{pmatrix}. \]
183
184Since there are no diagonal terms, there are only shear stresses.
185
186\textbf{Solution for c):} \\
187\[ (\curl \vec{u})_i = \varepsilon_{ijk} \partial_j u_k = \varepsilon_{ijk} i k_j u_k = i (\vec{k} \cross \vec{u}), \]
188but since for longitudinal waves $\vec{k}$ is parallel to $\vec{u}$ (because of their definition), we have that $\curl \vec{u} = 0$.
189
190\textbf{Solution for d):} \\
191\[ \vec{u} = a \exp[i(kx - \omega t)] \hat{x}. \]
192Therefore:
193\[ \nabla \vec{u} = aik \exp[i(kx - \omega t)] e_{xx}, \]
194which means
195\[ \TT{u} = aik \exp[i(kx - \omega t)] e_{xx}. \]
196Applying Hooke's law, we have that the only non-zero components of $\TT{\sigma}$ are:
197\[ \sigma_{xx} = (2 \mu + \lambda) u_{xx}, \]
198\[ \sigma_{yy} = \sigma_{zz} = \lambda u_{xx}. \]
199We have confirmed that $\TT{\sigma}$ is diagonal, which means there are only normal stresses (no shearing).
200
201\end{document}