Adrià Vilanova Martínez | ce8597a | 2021-09-21 18:26:59 +0200 | [diff] [blame] | 1 | \documentclass[11pt,a4paper,dvipsnames]{article} |
| 2 | \usepackage[utf8]{inputenc} |
| 3 | |
| 4 | \input{../preamble.tex} |
| 5 | |
| 6 | \title{Homework 3\\Continuum Mechanics} |
| 7 | \author{Adrià Vilanova Martínez} |
| 8 | \date{April 11, 2021} |
| 9 | |
| 10 | \begin{document} |
| 11 | |
| 12 | \maketitle |
| 13 | |
| 14 | \begin{Problem} |
| 15 | One of the hallmarks of the linear regime is the superposition principle. In this problem, we are going to use superposition to find the relation between the bulk modulus $K$, Young's modulus $Y$ and Poisson's ration $\nu$. |
| 16 | |
| 17 | Consider a rectangular block subjected to uniform compressive stresses $-P$ on each face. The equilibrium sides of the block along $x$, $y$ and $z$ are $l$, $h$ and $w$, respectively, and the corresponding length changes are $\Delta l$, $\Delta h$ and $\Delta w$. |
| 18 | |
| 19 | \begin{enumerate}[a)] |
| 20 | \item Find the strain along $x$ using Hooke's law as we learnt it in introductory courses (that is, $\sigma_{xx} = Y u_{xx}$ and $u_{yy} = u_{zz} = - \nu u_{xx}$). You will be using superposition since the strain along $x$ is the sum of three contributions, one coming from the compressive stress along $x$ and two additional contributions coming from the compressive stresses along $y$ and $z$. |
| 21 | |
| 22 | Confirm that by using the inverted version of Hooke's law for isotropic materials we obtain the same answer. |
| 23 | |
| 24 | \item The strains along $y$ and $z$ are identical to that along $x$. Find the bulk modulus of the material as a function of $Y$ and $\nu$. Realize our result is identical to that obtained in class in an alternative way. |
| 25 | \end{enumerate} |
| 26 | \end{Problem} |
| 27 | |
| 28 | \textbf{Solution for a):} \\ |
| 29 | As the only contact force is pressure, the only components of the stress tensor will be the ones in the diagonal, which will be equal to $-P$. |
| 30 | |
| 31 | If we only consider the compressive stress along $x$, we get: |
| 32 | \[ u_{xx}^1 = \frac{1}{Y} \sigma_{xx} = - \frac{1}{Y} P. \] |
| 33 | |
| 34 | However, we also have to consider the strain caused by the stresses in the $y$ and $z$ directions: |
| 35 | \[ \begin{cases} |
| 36 | \displaystyle u_{xx}^2 = - \nu u_{yy}^2 = - \frac{\nu}{Y} \sigma_{yy} = \frac{\nu}{Y} P, \\[2ex] |
| 37 | \displaystyle u_{xx}^3 = - \nu u_{zz}^3 = - \frac{\nu}{Y} \sigma_{zz} = \frac{\nu}{Y} P. |
| 38 | \end{cases} \] |
| 39 | |
| 40 | So, by the superposition principle: |
| 41 | \[ u_{xx} = u_{xx}^1 + u_{xx}^2 + u_{xx}^3 = \frac{P}{Y} \left( 2 \nu - 1 \right). \] |
| 42 | |
| 43 | We can also calculate the strain along $x$ with the inverted version of Hooke's law for isotropic materials: |
| 44 | \[ u_{ij} = \frac{1 + \nu}{Y} \sigma_{ij} - \frac{\nu}{Y} \, \Tr \TT{\sigma} \, \delta_{ij}. \] |
| 45 | |
| 46 | By using it, we obtain: |
| 47 | \[ u_{xx} = \frac{1}{Y} \left( (1 + \nu) \sigma_{xx} - \nu \, \Tr \TT{\sigma} \, \delta_{xx} \right) = \frac{1}{Y} \left( - (1 + \nu) P + 3 \nu P \right) = \] |
| 48 | \[ = \frac{P}{Y} \left( - 1 - \nu + 3 \nu \right) = \frac{P}{Y} \left( 2 \nu - 1 \right) \] |
| 49 | which is precisely what we got before by using the superposition principle and Hooke's law we learned in introductory courses. |
| 50 | |
| 51 | \textbf{Solution for b):} \\ |
| 52 | From the previous result, we obtain: |
| 53 | \[ \Tr \TT{u} = 3 P \frac{2 \nu - 1}{Y} \notate[X]{{}\implies{}}{1.25}{\scriptstyle \Tr \TT{u} \, \approx \, \frac{\Delta V}{V}} P \frac{V}{\Delta V} \approx \frac{1}{3} \frac{Y}{2 \nu - 1}. \] |
| 54 | |
| 55 | And by the definition of the bulk modulus, we conclude that |
| 56 | \[ K = - V \left( \frac{\partial P}{\partial V} \right)_T \approx - V \frac{\Delta P}{\Delta V} \approx \frac{Y}{3 (1 - 2 \nu)} \] |
| 57 | which is the same result we derived in class. |
| 58 | |
| 59 | \newpage |
| 60 | |
| 61 | \begin{Problem} |
| 62 | Consider the class example we referred to as ``constrained settling''. We are going to tackle the problem here in an alternative way to how we did it in class. |
| 63 | |
| 64 | \begin{enumerate}[a)] |
| 65 | \item Start by solving the Navier-Cauchy equation to obtain the displacement field. |
| 66 | \item Then obtain the strain and stress tensors. |
| 67 | \item Why do you think Lautrup refers to this example as an ``elastic sea''? |
| 68 | \end{enumerate} |
| 69 | \end{Problem} |
| 70 | |
| 71 | \Solution |
| 72 | The Navier-Cauchy equation is: |
| 73 | \[ \vec{f} + \mu \nabla^2 \vec{u} + (\lambda + \mu) \nabla (\nabla \cdot \vec{u}) = 0. \] |
| 74 | |
| 75 | Since the walls are slippery, they allow vertical but not horizontal displacements. This indicates us that the displacement field will be of the form $\vec{u} = (0, 0, u_z(z))$. By imposing the Navier-Cauchy equation to this expression, we get the following: |
| 76 | \[ 0 = \begin{pmatrix} |
| 77 | 0 \\ |
| 78 | 0 \\ |
| 79 | - \rho g |
| 80 | \end{pmatrix} + \mu \begin{pmatrix} |
| 81 | 0 \\ |
| 82 | 0 \\ |
| 83 | u_z''(z) |
| 84 | \end{pmatrix} + (\lambda + \mu) \begin{pmatrix} |
| 85 | 0 \\ |
| 86 | 0 \\ |
| 87 | u_z''(z) |
| 88 | \end{pmatrix} \implies \] |
| 89 | \[ \implies \rho g = (\lambda + 2 \mu) u_z''(z) \implies u_z''(z) = \frac{\rho g}{\lambda + 2 \mu} =: \frac{1}{D} \implies \] |
| 90 | \[ \implies u'_z(z) = \frac{1}{D} z + C \implies u_z(z) = \frac{1}{2D}z^2 + Cz + B \] |
| 91 | |
| 92 | where $C, B$ are constants that are determined by the boundary conditions. |
| 93 | |
| 94 | In our case, our boundary conditions are the following ones: |
| 95 | \[ \begin{cases} |
| 96 | u_z(0) = 0 \implies B = 0 \\ |
| 97 | [ \TT{\sigma} \cdot \hat{n} ] = 0. |
| 98 | \end{cases} \] |
| 99 | |
| 100 | Let's calculate the strain tensor: |
| 101 | \[ \TT{u} = \frac{1}{2} (\nabla \vec{u} + (\nabla \vec{u})^T) \] |
| 102 | where |
| 103 | \[ \nabla \vec{u} = \begin{pmatrix} |
| 104 | 0 & 0 & 0 \\ |
| 105 | 0 & 0 & 0 \\ |
| 106 | 0 & 0 & \frac{z}{D} + C |
| 107 | \end{pmatrix}. \] |
| 108 | |
| 109 | Therefore: |
| 110 | \[ \TT{u} = \begin{pmatrix} |
| 111 | 0 & 0 & 0 \\ |
| 112 | 0 & 0 & 0 \\ |
| 113 | 0 & 0 & \frac{z}{D} + C |
| 114 | \end{pmatrix}. \] |
| 115 | |
| 116 | We can then calculate the stress vector using Hooke's law: |
| 117 | \[ \sigma_{ij} = 2 \mu u_{ij} + \lambda \, \Tr \TT{u} \, \delta_{ij} \implies \] |
| 118 | \[ \implies \TT{\sigma} = \left( \frac{z}{D} + C \right) \begin{pmatrix} |
| 119 | \lambda & 0 & 0 \\ |
| 120 | 0 & \lambda & 0 \\ |
| 121 | 0 & 0 & \lambda + 2 \mu |
| 122 | \end{pmatrix} \] |
| 123 | |
| 124 | Now we can impose the boundary condition $[\TT{\sigma} \cdot \hat{n}] = 0$. Since the interface is a free surface (we neglect atmospheric pressure), we have that $\TT{\sigma}_2 = 0$, which means that: |
| 125 | \[ \TT{\sigma}_1 \hat{n} = 0 \implies \sigma_{iz}(h) = 0 \quad \forall i. \] |
| 126 | |
| 127 | In particular, $\sigma_{zz}(h) = 0$, and this means |
| 128 | \[ C = - \frac{h}{D}. \] |
| 129 | |
| 130 | In conclusion, substituting $C$ and $D$ into the expressions we found: |
| 131 | \[ \begin{cases} |
| 132 | \vec{u} = \begin{pmatrix} |
| 133 | 0 \\ |
| 134 | 0 \\ |
| 135 | \frac{1}{D} \left( \frac{1}{2} z^2 - hz \right) |
| 136 | \end{pmatrix} \\ |
| 137 | \TT{u} = \begin{pmatrix} |
| 138 | 0 & 0 & 0 \\ |
| 139 | 0 & 0 & 0 \\ |
| 140 | 0 & 0 & \frac{1}{D} (z - h) |
| 141 | \end{pmatrix} \\ |
| 142 | \TT{\sigma} = \frac{\lambda}{D} (z - h) \begin{pmatrix} |
| 143 | \lambda & 0 & 0 \\ |
| 144 | 0 & \lambda & 0 \\ |
| 145 | 0 & 0 & \lambda + 2 \mu |
| 146 | \end{pmatrix}. |
| 147 | \end{cases} \] |
| 148 | |
| 149 | Lautrup refers to this example as an elastic sea because $p_z = - \sigma_{zz} = \rho g (h - z)$, and $p_z$ increases linearly with depth like a fluid at rest. |
| 150 | |
| 151 | \newpage |
| 152 | |
| 153 | \begin{Problem} |
| 154 | Consider the situation studied in problem 2: a homogeneous and isotropic elastic solid with denisty $\rho$ inside a container with rigid walls. However, in this case, the container is cylindrical and not a prism, and there is friction between the elastic solid and the walls. Hence, $\sigma_{zr} (r = R) = \mu_s \sigma_{zz} (r = R)$, where $R$ is the radius of the circular cross-section and $\mu_s$ is the friction coefficient. There is still gravity; the corresponding specific force is $\vec{g} = g \hat{z}$. Note the $z$-axis runs along the cylinder and points downwards. |
| 155 | |
| 156 | \begin{enumerate}[a)] |
| 157 | \item Discuss how friction affects both the strain and stress tensors. What new components arise in these tensors relative to the case without friction? |
| 158 | |
| 159 | \item Now consider a thin slice of elastic material inside the cylindrical container; this slice will have cross-sectional area $\pi R^2$ and height $\Delta z$. |
| 160 | |
| 161 | Apply the condition of mechanical equilibrium to this slice, assuming that $\sigma_{zz}$ is uniform across the circular cross-section and that $\sigma_{rr} = \sigma_{\theta \theta} = k \sigma_{zz}$, with $k$ a constant, and show that |
| 162 | \[ \frac{d \sigma_{zz}}{dz} = - \rho g - \frac{2 \mu_s k}{R} \sigma_{zz}. \] |
| 163 | |
| 164 | \item Integrate this equation and show that |
| 165 | \[ p_z = \rho g \lambda \left( 1 - e^{- \frac{z}{\lambda}} \right) \] |
| 166 | where $\lambda = \frac{R}{2 \mu_s k}$. Note we have assumed that at the top of the solid $\sigma_{zz} = 0$. |
| 167 | |
| 168 | \item Consider the limiting cases $z \ll \lambda$ and $z \gg \lambda$ and discuss the physics in each case. Doing this illustrates the physical significance of $\lambda$ and what friction brings to the problem. |
| 169 | \end{enumerate} |
| 170 | \end{Problem} |
| 171 | |
| 172 | \textbf{Solution for a):} \\ |
| 173 | Due to friction, $\vec{u} = (0, 0, u_z(r, z))$, so in adition to the dependence on z, there's now an r-dependence too. |
| 174 | |
| 175 | \[ \vec{\nabla} \vec{u} = \begin{pmatrix} |
| 176 | 0 & 0 & \partial_r u_z \\ |
| 177 | 0 & 0 & 0 \\ |
| 178 | 0 & 0 & \partial_z u_z |
| 179 | \end{pmatrix} \implies \TT{u} = \frac{1}{2} (\vec{\nabla} \vec{u} + (\vec{\nabla} \vec{u})^T) = \begin{pmatrix} |
| 180 | 0 & 0 & \frac{1}{2} \partial_r u_z \\ |
| 181 | 0 & 0 & 0 \\ |
| 182 | \frac{1}{2} \partial_r u_z & 0 & \partial_z u_z |
| 183 | \end{pmatrix}. \] |
| 184 | |
| 185 | We can now use Hooke's law: |
| 186 | \[ \TT{\sigma} = 2 \mu \TT{u} + \lambda (\Tr \TT{u}) \TT{I} \implies \] |
| 187 | \[ \TT{\sigma} = \begin{pmatrix} |
| 188 | \lambda \partial_z u_z & 0 & \mu \partial_r u_z \\ |
| 189 | 0 & \lambda \partial_z u_z & 0 \\ |
| 190 | \mu \partial_r u_z & 0 & (2 \mu + \lambda) \partial_z u_z |
| 191 | \end{pmatrix}. \] |
| 192 | |
| 193 | \textbf{Solution for b):} \\ |
| 194 | The local condition for mechanical equilibrium is |
| 195 | \[ \vec{f} + \nabla \cdot \TT{\sigma}^T = 0 \quad \forall \text{ material particles}. \] |
| 196 | |
| 197 | If we integrate over volume $V$: |
| 198 | \[ \int_V \vec{f} dv' + \int_V \vec{\nabla} \cdot \TT{\sigma}^T dv' = \int_V \vec{F} dv' + \oint_A \TT{\sigma} \cdot \vec{dS} = 0, \] |
| 199 | where $V$ is a cylindrical slice of the material ($|V| = \pi R^2 \Delta z$). |
| 200 | |
| 201 | \[ \int_V \vec{f} dv' = \int_V \rho \vec{g} dv' = \hat{e}_z \rho g \pi R^2 \Delta z. \] |
| 202 | \[ \oint_A \TT{\sigma} \cdot \vec{dS} = \int_{A_1} \TT{\sigma} \vec{dS} + \int_{A_2} \TT{\sigma} \vec{dS} + \int_{A_\perp} \TT{\sigma} \vec{dS}, \] |
| 203 | where $A_1$, $A_2$ are the circular surfaces at the top and at the bottom, and $A_\perp$ is the lateral surface. |
| 204 | |
| 205 | For the top and bottom surfaces, we have: |
| 206 | \[ \int_{A_i} \TT{\sigma} \cdot \vec{dS} = \int_{A_i} (-1)^i \TT{\sigma}_{rz}(z_i) \hat{e}_r r d\theta dr + \int_{A_i} (-1)^i \sigma_{zz}(z_i) \hat{e}_z r d\theta dr, \] |
| 207 | and since $\sigma_{zz} \neq f(r)$ because we've supposed that it is uniform across the entire section, we have: |
| 208 | \[ \int_{A_i} \TT{\sigma} \cdot \vec{dS} = 0 + \int_{A_i} (-1)^i \sigma_{zz}(z_i) \hat{e}_z r d\theta dr = (-1)^i \hat{e}_z \sigma_{zz}(z_i) R^2 \pi \] |
| 209 | |
| 210 | For the lateral surface, we have: |
| 211 | \[ \int_{A_\perp} \TT{\sigma} \cdot \vec{dS} = \int_{A_\perp} \sigma_{rr} R d\theta dz \hat{e}_r + \int_{A_\perp} \sigma_{zr}(R) R d\theta dz \hat{e}_z = \] |
| 212 | \[ = 0 + \mu_S K R \hat{e}_z \int_{z}^{z + \Delta z} \sigma_{zz} dz' \int_{0}^{2\pi} d\theta \approx 2 \pi R \mu_S k \hat{e}_z \sigma_{zz} \Delta z. \] |
| 213 | |
| 214 | Putting it all together: |
| 215 | \[ \hat{e}_z (\rho g \pi R^2 \Delta z - \sigma_{zz}(z) \pi R^2 + \sigma_zz{z + \Delta z} \pi R^2 + 2\pi R \mu_S k \sigma_{zz} \Delta z) = 0 \implies \] |
| 216 | \[ \implies \pi R^2 \frac{\sigma_{zz}(z + \Delta z) - \sigma_{zz}(z)}{\Delta z} = - \rho g \pi R^2 - 2 \pi R \mu_s k \sigma_{zz}. \] |
| 217 | |
| 218 | Taking the limit for $\Delta z \to 0$: |
| 219 | \[ \pi R^2 \frac{d \sigma_{zz}}{dz} = - \rho g \pi R^2 - 2 \pi R \mu_S k \sigma_{zz} \implies \] |
| 220 | \[ \implies \frac{d\sigma_{zz}}{dz} = - \rho g - \frac{2 \mu_s k}{R} \sigma_{zz}. \] |
| 221 | |
| 222 | \textbf{Solution for c):} \\ |
| 223 | We'll first solve the homogeneous ODE |
| 224 | \[ f'(z) + \frac{1}{\lambda} f(z) = 0. \] |
| 225 | |
| 226 | This is a linear ODE with known solution |
| 227 | \[ f_h(z) = e^{- \frac{z}{\lambda}}. \] |
| 228 | |
| 229 | We can then solve the full ODE with the constant variations method: let's suppose the solution to the full ODE is $\sigma_{zz}(z) = f(z) = f_h(z) g(z)$. Then: |
| 230 | \[ f_h'(z) g(z) + f_h(z) g'(z) = f'(z) = - \rho g - \frac{1}{\lambda} f_h(z) g(z) \implies \] |
| 231 | \[ \implies \cancel{- \frac{1}{\lambda} f_h(z) g(z)} + g'(z) f_h(z) = - \rho g \cancel{- \frac{1}{\lambda} f_h(z) g(z)} \implies \] |
| 232 | \[ \implies g'(z) = - \rho g e^{\frac{z}{\lambda}} \implies g(z) = C - \rho g \lambda e^{\frac{z}{h}} = C - \rho g \lambda \frac{1}{f_h(z)} \implies \] |
| 233 | \[ \implies \sigma_{zz}(z) = f(z) = f_h(z) \left( C - \rho g \lambda \frac{1}{f_h(z)} \right) = C f_h(z) - \rho g \lambda = C e^{-\frac{z}{h}} - \rho g \lambda. \] |
| 234 | |
| 235 | If we impose $\sigma_{zz}(0) = 0$: |
| 236 | \[ 0 = \sigma_{zz}(0) = C - \rho g \lambda \implies C = \rho g \lambda, \] |
| 237 | and thus: |
| 238 | \[ \sigma_{zz}(z) = \rho g \lambda \left( e^{-\frac{z}{h}} - 1 \right). \] |
| 239 | |
| 240 | Since $p_z = - \sigma_{zz}$, we have shown that the statement is true. |
| 241 | |
| 242 | \textbf{Solution for d):} \\ |
| 243 | $\lambda = \frac{R}{2 \mu_S k}$ is a characteristic length scale ($\mu_S$, $k$ are dimensionless). Using $\mu_s \approx 0.5$, $k \approx 1$, we find $\lambda \approx R$. |
| 244 | |
| 245 | To discuss the case in which $z \ll \lambda$, we can approximate $p_z$ via a truncated Taylor series: |
| 246 | \[ p_z(z) = \rho g \lambda \left( \frac{z}{\lambda} + \mathcal{O}\left(\frac{z}{\lambda}\right)^2 \right) \approx \rho g z, \] |
| 247 | which is the behavior in the absence of friction. |
| 248 | |
| 249 | If instead $z \gg \lambda$, this means $\frac{z}{\lambda} \gg 1$ and therefore $e^{- \frac{z}{h}} \ll 1$. Thus: |
| 250 | \[ e^{- \frac{z}{h}} \approx 0 \implies p_z(z) \approx \rho g \lambda, \] |
| 251 | which is a constant value. |
| 252 | |
| 253 | Therefore, we can conclude the pressure saturates for sufficiently large $z$. Friction supports the weight of the elastic material for sufficiently light columns. |
| 254 | |
| 255 | \end{document} |