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Problem 1. Two incompressible and immiscible fluids of similar densities ρ1
and ρ2, and of viscosities η1 and η2 are confined between two horizontal parallel
plates. The gap between the plates is H. Since ρ1 ≈ ρ2, we can safely neglect
gravitational effects.

Fluid 1, in contact with the lower plate, forms a layer of thickness h1. Fluid 2, in
contact with the upper plate, forms a layer on top of fluid 1 of thickness H − h1.
The upper plate moves with velocity ~U = Uî.

a) Determine the steady-state velocity profile in each fluid layer. Sketch both
velocity profiles assuming η2 = 2η1.

b) Compute the tangential force per unit area exerted on the upper plate.

c) Think about the pressure and whether it is constant or not and why.

Note: I understood η2 = 2η1 was a restriction throughout the whole problem, and not
only for the velocity profiles.

Solution for a):
Because of the temporal and spatial symmetries of the problem and some of the boundary
conditions, the velocity field will only depend on z, so ~v ≡ ~v(z), and we’ll also have that
~v · ĵ = ~v · k̂ = 0.

Imposing Navier-Cauchy’s equation in the case of incompressible fluids (for a generic
viscosity η and a velocity of the previous form) taken into account that we’re in a steady
state, we obtain: 

0 = −∂xp+ ηv′′x(z),
0 = −∂yp =⇒ p 6≡ p(y),
0 = −∂zp =⇒ p 6≡ p(z).

In the case of parallel flow in the x-direction in stationary flows, we know that ∂xP is
constant throughout the volume of the fluid (and in fact equal to 0 due to the fact that
the flow is only driven by the plates and is not pressure-driven). Thus, by integrating
the first equation we have

vx(z) = cz + d,

which is the expression for the only non-zero component of the velocity field in both
fluids (each fluid will have its own constants, which will be denoted by ci and di where
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i is the index of the fluid which has density ρi and viscosity ηi).

Let’s now impose all the boundary conditions: due to the fact that the fluids are real,
there is a no slip condition in the interfaces with the plates (the tangential components
of the velocity of the plate and fluid will be equal). This means:{

vx(H) = U,

vx(0) = 0
=⇒

{
c2H + d2 = U,

d1 = 0.
=⇒

=⇒ vx(z) =
{
c1z, (z < h1)
c2(z −H) + U. (z > h1)

At the interface between both fluids, since it is planar, both fluids are incompressible
and Newtonian, and the velocity field is of the form ~v = vx(z)̂i, we have seen in class
that in that interface we have

η1∂zv
(1)
x = η2∂zv

(2)
x =⇒ ∂zv

(1)
x = 2∂zv(2)

x ,

where the superscript indicates whether the expression of the velocity taken is the limit
coming from the upper (2) or lower (1) section.

Thus, derivating and using the previous equality we obtain:

c := c1 = 2c2 =⇒ vx(z) =
{

2cz, (z < h1)
c(z −H) + U. (z > h1)

I missed the following boundary condition which lets us determine c: we must impose
continuity of the velocity at the liquid-liquid interface:

v(1)
x (h1) = v(2)

x (h1) =⇒ 2ch1 = c(h1 −H) + U =⇒ c = 1
h1

(U − cH).

At the interface between both fluids we can also impose the continuity of the tangential
stresses. For that, let’s calculate the stress tensor:

∇~v = v′x(z)k̂î =⇒ ¯̄e = 1
2v
′
x(z)(k̂î+ îk̂).

Finally, since ¯̄σ = −p ¯̄I + ¯̄σ′ = −p ¯̄I + 2η¯̄e:

¯̄σ = −p ¯̄I + ηv′x(z)(k̂î+ îk̂).

Now we can impose the boundary condition (¯̄σ1 · n̂) · n̂ = (¯̄σ2 · n̂) · n̂ = 0, which gives us:

p1 = p2.

This means the pressure is identical in both fluids.

However, here we’ve supposed that superficial tension is 0. If that wasn’t the case,
although pressure would remain constants in each of the fluids, we would have a difference
of pressures ∆p = 2γH at the interface. As the mean curvature is H = 0, we would also
get p1 = p2 in this case, though.
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Figure 1: Sketch of the velocity profile when η2 = 2η1.

Solution for b):
The tangential force per unit area exerted on the upper plate is:

σxz(H) = ηv′x(H) = ηU.

Solution for c):
As shown in section a), in both fluids the pressure in all points throughout each fluid is
constant, and not only that, but both pressures are equal to each other.
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Problem 2. A liquid of viscosity η flows under the action of gravity through a
cylindrical pipe of radius R and length L. The pipe is inclined an angle α relative
to the horizontal. There is also a pressure difference ∆p between the two ends of
the pipe.

a) Compute the steady-state velocity profile.

b) Find the flow rate across the pipe.

c) Calculate the viscous drag force exerted by the fluid on the pipe.

Let’s use cylindrical coordinates, (r, θ, z), with the symmetry axis of the pipe along z.

In general, ~v = (vr, vθ, vz), but considering laminar flow and symmetry arguments (no
end effects), we have ~v = vz(r, θ, z)êz and vr = vθ = 0.

In addition, the fluid is assumed to be incompressible:

∇ · ~v = 0 =⇒ ∂zvz = 0 =⇒ vz 6≡ vz(z).

Due to symmetry, the velocity field has no angular dependence either, so that vz 6≡ vz(θ).
Hence:

~v = vz(r)êz,

where vz(r) is the radial velocity profile.

The convective acceleration is then identically zero (parallel shear flow): (~v · ∇)~v =
vz∂z~v = 0. The flow is also stationary: ∂t~v = 0. The Navier-Stokes equation reduces to:

0 = −∇p+ ρ~g + η∇2~v.

For the three velocity components:
0 = −∂rp+ ρg cosα cos θ,
0 = −1

r∂θp− ρg cosα sin θ,
0 = −∂zp+ ρg sinα+ η∇2vz.

The first 2 equations simply determine the hydrostatic pressure profile, p(r, θ, z).

The presure gradient in the z direction is constant, by translational invariance along z,
and given by ∂zp = ∆p

L with ∆p := pL − p0. The last equation then reads:

η∇2vz = −ρg sinα+ ∆p
L

=⇒ η
1
r
∂r(r∂r)vz(r) = −ρg sinα+ ∆p

L
=⇒

=⇒ ∂r(r∂r)vz(r) = 1
η

(
−ρg sinα+ ∆p

L

)
r =⇒

=⇒ r∂rrvz(r) = 1
η

(
−ρg sinα+ ∆p

L

)
r − ∂rvz(r) =⇒

=⇒ ∂rrvz(r) = 1
η

(
−ρg sinα+ ∆p

L

)
− 1
r
∂rvz(r) =⇒

=⇒ ∂rvz(r) = 1
2η

(
−ρg sinα+ ∆p

L

)
r + A

r
=⇒
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=⇒ vz(r) = 1
4η

(
−ρg sinα+ ∆p

L

)
r2 +A log(r) +B.

The constants A, B are determined by the boundary conditions:vz(0) 6→ ∞ =⇒ A = 0,
vz(R) = 0((no− slip)) =⇒ B = − 1

4 η

(
−ρg sinα+ ∆p

L

)
R2.

Finally:
vz(r) = 1

4η

(∆p
L
− ρg sinα

)
(r2 −R2).

This is a parabolic velocity profile, which results from the superposition of a profile due
to ∆p

L and to g separately, since the reduced Navier-Stokes equation is linear.

Solution for b):
Flow rate:

Q =
∫ 2π

0
dθ

∫ R

0
dr rvz(r) = 2π

4η

(∆p
L
− ρg sinα

)∫ R

0
r(r2 −R2) dr =⇒

=⇒ Q = π

8ηR
4
(
ρg sinα− ∆p

L

)
.

Solution for c):
Drag force on the pipe:

d~F

dS
= ¯̄σ′ · n̂, ¯̄σ′ = η(∇~v + (∇~v)T ).

In this case the only non-zero elements of the viscous stress tensor are σ′rz = σ′zr = η∂rvz.
Hence:

d~F

dS
= σ′zr|r=Rêz = η

∂vz
∂r

∣∣∣∣
r=R

êz = 1
2

(∆p
L
− ρg sinα

)
Rêz.

Integrating over the surface of the pipe, we get the total drag force:

Fz = 1
2

(∆p
L
− ρg sinα

)
R

∫ L

0
dz

∫ 2π

0
dθ R,

so that
Fz = πR2L

(∆p
L
− ρg sinα

)
; ~F = Fz êz.

5



Problem 3. Vorticity in Stokes’ 1st problem - we have looked at this problem
in class. Specifically, we obtained the velocity profile by solving the Navier-Stokes
equation, which reduces in this problem to the diffusion equation.

a) Using the result in class, find the vorticity.

b) Calculate the vorticity flux through rectangle in the xy-plane with dimension
along x equal to L. (Hint: use Stokes’ theorem to find the corresponding
circulation.)

Note that the vorticity-flux is independent of time; it remains unchanged as
the Stokes’ boundary layer grows.

c) Using what we called in class the alternative form of the Navier-Stokes
equation, show that vorticity obeys a diffusion equation.

This tells us that vorticity cannot be generated inside the viscous Stokes’
layer during its growth, but only redistributed. We thus conclude that
vorticity must arise at the plate surface during the (in reality, nearly) in-
stantaneous accelereation of the fluid, and afterwards diffuse away from the
plate into the fluid at large without changing the total vorticity-flux.

Solution for a):
In class we found that

vx(y, t) = v0

[
1− erf

(
y

2
√
νt

)]
.

Therefore:

~ω =∇× ~v =

∣∣∣∣∣∣∣∣
î ∂x v0

[
1− erf

(
y

2
√
νt

)]
ĵ ∂y 0
k̂ ∂z 0

∣∣∣∣∣∣∣∣ = v0√
πνt

exp
[
−
(

y

2
√
νt

)2
]
k̂.

Solution for b):

I =
∫
R

(∇× ~v)dS =
∮
∂R
~v · dl =

(∫
AB

+
∫
BC

+
∫
CD

+
∫
DA

)
~v · dl,

where A,B,C,D are the vertexs of the rectangle starting from the bottom-left corner
(lowest x and y) in the anti-clockwise direction. Since ~v = vx(y)̂i:

I =
(∫

AB
+S
SS

∫
BC

+
∫
CD

+S
SS

∫
DA

)
~v · dl = L(vx(y1)− vx(y2)).

Considering the bottom side at the origin, and taking the limit of the upper side of
the rectangle going to infinity, given that at the infinity limit vx = 0 and at the origin
vx = v0, we get

I = Lv0.

Solution for c):
The alternative form of the Navier-Stokes equation for incompressible flows is:

∂t~ω +∇× (~ω× ~v) = η

ρ
∇2~ω
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We can use the identity for the curl of the vectorial product of 2 vector fields to see that
the second term in the LHS vanishes, thus leaving us with the diffusion equation in 3D:

∇× (~ω× ~v) = ~ω���∇ · ~v − ~v���∇ · ~ω + (~v · ∇)~ω − (~ω · ∇)~v =

= vx���∂x~ω − ωz��∂z~v = 0,

where we have used the results in sections a) and b), the fact that the flow is incom-
pressible and that ∇ · ~ω =∇ · (∇× ~v) = 0.

Therefore:
∂t~ω = η

ρ
∇2~ω.

Problem 4. Consider the kinetic energy density of an incompressible fluid, 1
2ρv

2.
In this problem we are going to derive the conservation law for energy applied to
a control (fixed) volume V .

a) Use the equation of motion for a fluid to show that:

∂t

(1
2ρv

2
)

= v2

2 ∂tρ− ρvivj∂jvi − vi∂ip+ vi∂jσ
′
ij + vifi.

Solution:
∂t

(1
2ρv

2
)

= v2

2 ∂tρ+ ρvi∂tvi =

= v2

2 ∂tρ+ ρvi(−(~v · ∇)vi + 1
ρ
f∗i ) =

= v2

2 ∂tρ+ ρv(−(vj∂j)vi + 1
ρ

(fi + (∇ · ¯̄σT )i)) =

= v2

2 ∂tρ− ρvivj∂jvi − vi∂ip+ vi∂jσ
′
ij + vifi.

b) Now use the continuity equation to show that:

vj∂j

(
ρv2

2

)
= vjρvi∂jvi −

v2

2
∂ρ

∂t
.

Solution:
First of all, we have:

vj∂j

(
ρv2

2

)
= vjρvi∂jvi −

v2

2 vj∂jρ.

Also, from the continuity equation it follows that

∂tρ = −∇ · (ρ~v) = −ρ���∇ · ~v − ~v ·∇ρ = −vj∂jρ,

which completes our proof.
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c) Use this result, that ∂j(viσ′ij) = vi∂jσ
′
ij + σ′ij∂jvi and that ¯̄σ′ is symmetric,

to obtain:

∂t

(1
2ρv

2
)

= −(~v ·∇)
(1

2ρv
2 + p

)
+∇ ·

(¯̄σ′ · ~v)− ¯̄σ′ :∇~v + ~v · ~f.

Solution:

∂t

(
ρ
v2

2

)
=
�
�
�v2

2 ∂tρ− vj∂j

(
ρv2

2

)
−
�
�
�v2

2 ∂tρ− vi∂ip+ ∂j(viσ′ij)− σ′ij∂jvi + vifi =

=

→ viσ
′
ij=viσ

′
ji=σ

′
jivi

− (~v ·∇)
(
ρv2

2 + p

)
+∇ ·

(¯̄σ′ · ~v)− ¯̄σ′ :∇~v + ~v · ~f.

d) Now use the identity ∇ ·
(
α ~A
)

= α∇ · ~A+ ~A ·∇α, with α a scalar and ~A

a vector, to finally obtain:

∂t

(1
2ρv

2
)

= −∇ ·
[
~v

(
ρv2

2 + p

)
− ¯̄σ′ · ~v

]
− ¯̄σ′ :∇~v + ~v · ~f.

Solution:
As per the identity above:

∇ ·
[
~v

(
ρv2

2 + p

)]
=

��
�
��

�
��
�(

ρv2

2 + p

)
∇ · ~v︸ ︷︷ ︸

=0
+ (~v ·∇)

(
ρv2

2 + p

)
= (~v ·∇)

(
ρv2

2 + p

)
.

e) By integrating this equation to control (fixed) volume V , and using Gauss
theorem, we arrive at the conservation law for the energy in volume V :

d

dt

∫
V

1
2ρv

2 dV ′ =−
∮
A

1
2ρv

2~v · n̂ dS −
∮
A
p~v · n̂ dS∮

A
~v · ¯̄σ′ · n̂ dS +

∫
V
~v · ~f dV ′ −

∫
V

¯̄σ′ :∇~v dV ′.

Solution:
Given that V is fixed: ∫

V
∂t

(1
2ρv

2
)
dV ′ = d

dt

∫
V

(1
2ρv

2
)
dV ′.

Then, using Gauss’ theorem:∫
V
∇ ·

[
~v

(
ρv2

2 + p

)
− ¯̄σ′ · ~v

]
dV ′ =

←¯̄σ′·~v=~v·¯̄σ′ because ¯̄σ′ symm.

∮
A

[
ρv2

2 ~v + p~v − ~v · ¯̄σ′
]
· n̂.
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f) Let’s work with the last energy dissipation term. Show that for a Newtonian
(and incompressible) fluid:

¯̄σ′ :∇~v = ¯̄σ′ : ¯̄e = 2η¯̄e2.

Solution:

¯̄σ′ :∇~v = σ′ij∂kvnδjkδin = σ′ij∂jvi = 1
2(2σ′ij∂jvi) =

= 1
2σ
′
ij∂jvi + 1

2σ
′
ji∂ivj =

→ ¯̄σ′ symmetric

1
2σ
′
ij∂jvi + 1

2σ
′
ij∂ivj = σ′ij

1
2(∂ivj + ∂jvi)︸ ︷︷ ︸

=eji

=

= σ′ijeji = ¯̄σ′ : ¯̄e.

Then, for an incmopressible newtonian fluid we have ¯̄σ′ = 2η¯̄e, and thus:

¯̄σ′ : ¯̄e = 2η¯̄e : ¯̄e = 2ηeijeknδjkδin = 2ηeijeji =

→ ¯̄e symmetric

2ηeijeij = 2η
∑
i,j

e2
ij .

Therefore, we obtain:
¯̄σ′ :∇~v = ¯̄σ′ : ¯̄e = 2η¯̄e2.
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