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Problem 1. Consider a passive rotation in 2D -a rotation of rectangular axis
with common origin.

a) Show that the components of vector A transform according to:(
a1
a2

)
=
(

cos θ − sin θ
sin θ cos θ

)(
a′1
a′2

)
= ¯̄B

(
a′1
a′2

)

where (a1, a2) are the components of A in orthonormal basis {ê1, ê2} and
(a′1, a′2) are the components of A in orthonormal basis {ê′1, ê′2}, which is
rotated an angle θ relative to the unprimed basis.

b) Confirm matrix ¯̄B is orthonormal, that is, that its inverse is equal to its
transpose. We could have anticipated that since ¯̄B maps an orthonormal
basis into an orthonormal basis, which implies the transformation and thus
¯̄B is orthogonal.

c) Confirm also that the columns and rows of matrix ¯̄B form an orthonormal
basis of R2(R).

This is general: a real n × n matrix is orthonormal if and only if its rows
and columns each form an orthonormal basis of Rn(R).

d) Realize that det ¯̄B = 1, as expected for an orthogonal matrix represent-
ing a rotation. In fact, any 2 × 2 orthogonal matrix with determinant 1
corresponds to a rotation (the same applies to 3D). Additionally, any 2 × 2
orthogonal matrix with determinant -1 corresponds to a reflection through a
line (in 3D, the statement affirms that a reflection is involder -an orthogonal
3×3 matrix with determinant -1 thus corresponds to an improper rotation).

Solution for a):

Since we know from affine geometry courses that rotations are linear transformations,
in order to check that matrix

A :=
(

cos θ − sin θ
sin θ cos θ

)
is the transformation matrix which transforms the representation of vectors in orthonor-
mal basis E′ = {ê′1, ê′2} to their representation in orthonormal basis E = {ê1, ê2}, we
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know from linear algebra courses that it suffices to show that it correctly maps the
vectors which form basis E′ to their corresponding images.

We know that ê′1 = (0, 1)E′ is the vector ê1 = (0, 1)E rotated by angle θ. Therefore,

ê′1 = (cos θ, sin θ)E

by using the polar coordinates parametrization of e′1.

Also, we know that ê′2 is the vector ê2 rotated by angle θ, and also that since E is a
direct orthonormal basis of R2, vector ê2 is vector ê1 rotated by π

2 radians. Therefore,
by the same argument used above,

ê′2 =
(

cos
(
θ + π

2

)
, sin

(
θ + π

2

))
E

= (− sin θ, cos θ)E

where we’ve used the trigonometric identities cos
(
x+ π

2
)

= − sin x and sin
(
x+ π

2
)

=
cosx.

By calculating Aê′1 and Aê′2 we can check that the results are the same as what we have
found before.

Solution for b):

¯̄B orthonormal ⇐⇒ ¯̄B−1 = ¯̄BT ⇐⇒ ¯̄BT ¯̄B = ¯̄I

Let’s calculate ¯̄BT ¯̄B:

¯̄BT ¯̄B =
(

cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

=
(

cos2 θ + sin2 θ − sin θ cos θ + sin θ cos θ
− sin θ cos θ + sin θ cos θ cos2 θ + sin2 θ

)
=
(

1 0
0 1

)
= Id

Therefore, ¯̄B is orthonormal.

Solution for c):

Let’s show that columns v1 = (cos θ, sin θ) and v2 = (− sin θ, cos θ) (we assume they are
expressed in basis E) form an orthonormal basis, by definition of an orthonormal basis:

(v1, v1) = cos2 θ + sin2 θ = 1
(v1, v2) = − sin θ cos θ + sin θ cos θ = 0
(v2, v2) = sin2 θ + cos2 θ = 1

Therefore, they form an orthonormal basis.

Let’s check it for the row vectors ṽ1 = (cos θ,− sin θ), ṽ2 = (sin θ, cos θ) too:
(ṽ1, ṽ1) = cos2 θ + sin2 θ = 1
(ṽ1, ṽ2) = sin θ cos θ − sin θ cos θ = 0
(ṽ2, ṽ2) = sin2 θ + cos2 θ = 1
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Therefore, {ṽ1, ṽ2} also form an orthonormal basis.

Solution for d):

det ¯̄B = cos2 θ + sin2 θ = 1

The fact that any 2 × 2 orthogonal matrix with determinant 1 represents a rotation
and with determinant -1 represents a reflection through a line (and their equivalent
statements in 3D) is proved in [1].

Problem 2. Consider ¯̄B = ~u~v. Show that ¯̄B · ~w = ~u(~v · ~w).

We often think of the direct product between vectors in terms of its action on a
vector. Note how this way of thinking about it directly shows that, in general,
the direct product is not commutative: ~u~v 6= ~v~u.

Solution:

Using Einstein summation convention:

¯̄Bij = (~u~v)ij = uivj =⇒ ( ¯̄B · ~w)i = Bijwkδjk = Bijwj = uivjwj

(~v · ~w)j = viwjδij = vjwj =⇒ (~u(~v · ~w))i = uivjwj

Given that we’ve shown that each component of both vectors in a specific basis are equal
to each other, we have proven that in fact both vectors are equal to each other, thus
proving the statement.

Problem 3. Consider a second rank tensor ¯̄B written in terms of the {êi, êj}
basis. Show that êi · ¯̄B · êj = Bij (the i, j component of tensor ¯̄B).

Note this is the tensor expression analogous to the vector expression giving the i
component of, say, vector u: ui = êi · ~u. In continuum mechanics, we will ofteh
consider the i, j component of the stress tensor; it represents the i component of
the force (that is, the force along êi) per unit area acting on a surface element
oriented along direction j (that is, on a surface element with normal along êj).

Note: In quantum mechanics, we often write this tensor expression using bra-
kets: Bij = 〈êi| ¯̄B|êj〉. In this context, we think of ¯̄B as an operator. The quantity
〈êi| ¯̄B|êj〉 equals the expectation value of the observable represented by operator
¯̄B in quantum state |êi〉.

(êi · ¯̄B)m = δikBlmδkl = Bim =⇒

=⇒ êi · ¯̄B · êj = Bimδnjδmn = Bij
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Problem 4. We have stated in class that the symmetry and antisymmetry of
second rank tensors are tensor properties, that is, properties that are independent
of coordinate system.

To show this is the case for the symmetry property, first consider how second rank
tensors transform. Then assume the tensor is symmetric in the unprimed basis
to then show this is also true in the primed basis.

Let’s consider a change of basis for a second rank tensor. If S is the change of basis
matrix (from basis B′ to B) and A, A′ are the matrix representations of a second rank
tensor in basis B and B′ respectively, we have that:[2]

A′ = StAS.

Therefore:
A′t = (StAtS)t = StAS = A′

using the property (AB)t = BtAt.

Problem 5. Use index notation to show that ¯̄B : ¯̄C = Tr
( ¯̄B · ¯̄C

)
, where ¯̄B and

¯̄C are second rank tensors.

¯̄B : ¯̄C = BijCklδjkδil = BijCji

( ¯̄B · ¯̄C)il = BijCklδjk = BijCjl =⇒ Tr
( ¯̄B · ¯̄C

)
=
∑
i

( ¯̄B · ¯̄C)ii = BijCji

Problem 6. Use the quotient rule to show that torque is a second rank tensor.

In class we saw τij = riFj − rjFi. The quotient rule for second rank vectors states that
if we show that for every vector vj the quantities ui :=

∑
j Tijvj are the components of

a non-zero vector, then Tij are the components of a second rank tensor. It’s sufficient
to show this for a unit non-zerovector ê. Using Einstein’s summation convention:

ui = Tij êj = (riFj − rjFi)êj = ri(~F · ê)− Fi(~r · ê)

The two last terms are component i of 2 vectors, and so is their difference. Therefore,
by the quotient rule, this proves that torque is a second rank tensor.
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Problem 7. Prove that (~u′ × ~v′)α = (det ¯̄A)aαi(~u× ~v)i, where ¯̄A = {aij} is an
orthogonal transformation from the unprimed to the primed basis. This shows
the cross product between two (polar) vectors is a pseudovector.

It follows that the scalar ~w · (~u × ~v), where u, v and w are (polar) vectors, is a
pseudoscalar. Show this.

As we saw in class:
(~a×~b)i = εijkajbk,

ε′αβγ = det ¯̄Aaαiaβjaγkεijk

Since ¯̄A is the orthogonal transformation from the unprimed to the primed basis, we
have that ¯̄A · ~u = ~u′ and ¯̄A · ~v = ~v′. This means that:

(~u′)i = ( ¯̄A · ~u)i = aijukδjk = aikuk

and
(~v′)i = aikvk.

Then:
LHS = (~u′ × ~v′)α = (det ¯̄A)aαiaβjaγkaβmaγnεijkumvn

We have that columns of orthogonal matrix ¯̄A make an orthonormal triad (aijaik = δik),
so:

LHS = (det ¯̄A)aαiδjmδknεijkumvn = (det ¯̄A)aαiεimnumvn = (det ¯̄A)aαi(~u× ~v)i = RHS
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