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Problem 1. In this problem we are going to revisit the Venturi effect in the
experimental set-up where we use manometer tubes to determine the pressure (see
Fig. 1).

Show that if the flow is ideal and potential, hA = hB. Assume the pressures at A′

and B′ are equal to p0, and that the speed of the fluid at A′ and B′ is zero. Note
how by assuming potential flow, which is vorticity-free, we are truly neglecting
the no-slip boundary condition at the walls, where we know we generate vorticity
in real fluids. In this case, there is significant flow through the manometric tubes
and thus we no longer have hydrostatic equilibrium along y.

This problem illustrates that to get physically meaningful results we must implic-
itly consider the role of viscous effects near the conduit walls. This is something
we often do -assume viscous effects cause something that we must consider before
treating the flow as ideal. Only by doing this will we be able to say something
physically meaningful about the problem at hand. In the Venturi set-up in Fig.
1, we are approximating the flow profile as uniform in the cross-section, except in
the vicinity near the solid walls. The transition to the condition of zero tangential
velocity is then assumed to occur over a very narrow boundary layer. We relegate
viscous effects to only affect within this thin fluid layer near the conduit walls.
However, doing this is very important, as it prevents flow from penetrating the
manometric tubes, thus guaranteeing that the pressure along y is hydrostatic. The
presence of a boundary layer is thus essential to the analysis we did in class, even
if we did not explicitly considered it, and for it to describr reality; its presence,
and thus the presence of viscous effects, is what enabled us to treat the flow as
ideal to explain the experimentally observable fact that hB < hA.

Solution:
If the fluid is ideal, this means that it is incompressible and has viscosity η = 0.

As the flow is potential, we can use the 2nd representation of Bernouilli’s equation, which
is valid everywhere in the fluid (we’ll consider the fluid to be in a stationary state):

1
2ρv

2 + p+ ρϕ = const.

We also have ϕ = gy, and since the velocity at the top of the tubes is zero, we can
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evaluate the previous expression in the pairs of points (A, A’) and (B, B’):

pA + 1
2ρv

2
A = pA′ + ρgyA = p0 + ρgyA

pB + 1
2ρv

2
B = pB′ + ρgyB = p0 + ρgyB

Also, applying Bernouilli’s equation in points (A,B) we get the following equation which
lets us connect the previous 2 equations:

pA + 1
2ρv

2
A = pB + 1

2ρv
2
B =⇒

=⇒ p0 + ρgyA = p0 + ρgyB =⇒ yA = yB.

Problem 2. (The Coanda effect.) Place a cylindrical object under a liquid jet,
but slightly off-axis, as shown in Fig. 2(a). We observe that the jet tends to
stick to the obstacle and undergoes a deflection, while concomitantly, the wires
holding up the cylinder tilt towards the jet, indicating there is an attractive force
between the two. This is known as the Coanda effect and can be understood from
the curvature of the streamlines in the jet: The pressure on the surface of the
cylinder, pin, is less than the surrounding atmospheric pressure, patm.

Assume that instead of the jet we have a thin sheet of liquid in a plane parallel to
the axis of the cylinder, as illustrated in Fig. 2(b). The thickness of the sheet is
e� R, with R the radius of curvature of the streamlines, the density of the fluid
is ρ and the speed at which it flows is v. From the pressure difference patm − pin,
estimate the attraction force per-unit-length-along-the-cylinder-axis.

Note: The Coanda effect also allows explaining how a very light ball can be
levitated within an air jet impinging at a small angle to the vertical slightly above
the wall; this is often seen in some science museums. Just as in the case of the
cylinder, the compensating force results from the curvature of the streamlines,
which lowers the pressure, and not because of the impact of the jet of air. A
comparable phenomenon is the teapot effect: the liquid stream that flows from
the spout of a teapot seems to be attracted to the spout’s surface after having
followed the curve of the spout instead of flowing directly into a cup. However,
in this case, surface tension also plays a role; the contact between the liquid film
and the teapot depends on whether the liquid wets or not the teapot surface.

Solution:
The force will be given by the acceleration of the particles turning. Basically, those
particles will have a centripetal force which will be equal and opposite to that being felt
by the cylindrical object.

Given that the density of the fluid is constant, the flow is incompressible. Let’s consider
a single particle in contact with the cylinder’s surface. This particle will be experiencing
an acceleration in the direction normal to the surface (towards the center of curvature)
equal to

~a = −v
2

R
n̂.
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Thus, the force experienced by a particle is:

~f = −ρv
2

R
n̂.

Now, let’s integrate this in cylindrical coordinates to get the force:

~F =
∫
S
−ρv

2

R
n̂dS′ = L

∫ 2θi

0
dθ R

(
−ρv

2

R
n̂

)
=

= −Lρv2
∫ 2θi

0
dθ n̂ = −Lρv2

∫ 2θi

0
dθ (− cos θ î− sin θ ĵ) =

= −Lρv2[− sin(2θi) î+ (cos(2θi)− 1) ĵ] =

= −Lρv2[−2 sin θi cos θi î− 2 sin2 θi ĵ] = −2Lρv2 sin θi[− cos θi î− sin θi ĵ] =

= −2Lρv2 sin θi n̂θi
=⇒

=⇒
~F

L
= −2ρv2 sin θi n̂θi

.

The only problem with this calculation is it only accounts for the particles near the
cylinder. If we take into account all the particles of the flow (approximating R+e ≈ R),
we have to integrate the previous expression for all the streamlines, we get the correct
answer, which is:

~F

L
= −2ρv2e sin θin̂θi

.

Problem 3. An ideal fluid of density ρ flows steadily through an axisymmetric
pipe of decreasing cross section. The inlet and outlet cross-sectional areas are A1
and A2 < A1, respectively, and the flow is incompressible.

a) If the fluid gets into the pipe with speed U1, show, starting from the incom-
pressibility condition, that the speed at the outlet is U2 = U1

A1
A2

. Note this
reflects the flow rate through the pipe is constant.

b) Compute the force exerted by the fluid on the pipe.

Solution for a):
Let’s consider V as the volume enclosed by the closed surface ∂V = S1 ∪S2 ∪SL, where
S1 and S2 are the cross-sectional surfaces with areas A1 and A2, and SL is the lateral
surface along the pipe’s wall between the two previous surfaces.

∇ · ~v = 0 =⇒

→ True at all points

∫
V
∇ · ~v dv′ = 0 =⇒

→ Stokes’ theorem

∫
∂V
~v · d~S = 0 =⇒

→ ∂V=S1∪S2∪SL

=⇒ 0 =
(∫

∂S1
+
∫
∂S2

+
�

�
�

∫
∂SL

)
~v · d~S =

←In SL, ~v⊥d~S

∫
∂S1

~v · d~S +
∫
∂S2

~v · d~S =

=
∫
∂S1

(−U1) dS +
∫
∂S2

U2 dS = −U1A1 + U2A2 =⇒
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=⇒ U2 = U1
A1
A2
.

Solution for b):
Given that the fluid is ideal, let’s apply Bernoulli’s equation along a streamline:

p1 + ρv2
1

2 = p2 + ρv2
2

2 =⇒

=⇒ p2 = p1 + 1
2ρ
(
v2

1 − v2
2

)
= p1 + 1

2ρv
2
1

(
1−

(
A1
A2

)2
)
.

In order to calculate the force exerted by the fluid on the pipe, let’s impose the conser-
vation of momentum applied to volume V fixed:

d

dt

∫
V
ρ~v · dV ′ =

∫
V
∂t(ρ~v)dV ′ =

←stationarity

0,

d

dt

∫
V
ρ~v · dV ′ = −

∮
A

¯̄π · n̂ dS.

Since ¯̄pi = ρ~v~v − ¯̄σ = ρ~v~v − p ¯̄I, we have:∮
A

(ρ~v~v + p ¯̄I) · n̂ dS = 0.

Now, let’s compute the force in each separate area:

• In S1, ~v = u1x̂, n̂ = −x̂ and p = p1, so:∫
S1

(ρu1x̂(−u1)− x̂p1) dS = −x̂(ρu2
1 + p1)A1.

• In S2, ~v = u2x̂, n̂ = x̂ and p = p2, so:∫
S2

(ρu2x̂ · u2 + x̂p2) dS = x̂(ρu2
2 + p2)A2

• In SL, ~v · n̂ = 0, so ρ~v~v · n̂ = 0.

Thus:
~F =

∫
SL

pn̂ dS = x̂

[
p2(A1 −A2) + 1

2ρu
2
1A1

(
1− A1

A2

)2
]
.

Problem 4. Consider an incompressible fluid steadily rotating at constant
angular velocity Ω about the z-axis. The density of the fluid is ρ and we are in
the presence of the gravitational field of the Earth.

a) Show that the viscous term in the Navier-Stokes equation is identically equal
to zero. This implies the equation of motion is Euler’s equation.

b) Obtain Bernouilli’s equation in the rotating frame of reference. Does the
resultant equation provide the pressure field (at any r, z), or is it only ap-
plicable along a streamline?
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Solution for a):
The viscous term in the Navier-Stokes equation for incompressible fluids is:

η∇2~v.

Let’s see that it is equal to zero. The velocity field will be

~v = (0, vθ(r), 0){r̂,θ̂,ẑ}.

This is because the problem states that the fluid is steadily rotating at constant angular
velocity Ω. In fact:

vθ(r) = Ωr.

Thus, calculating the laplacian in cylindrical coordinates (and taking into consideraion
that the only non-negative partial derivative is ∂rvθ) we get:

η∇2~v = η

[
���∂rrvθ + 1

r
∂rvθ −

1
r2 vθ

]
θ̂ = η

[1
r

Ω− 1
r2 rΩ

]
θ̂ = 0.

Solution for b):
Let’s start with the Navier-Cauchy equation (in our case, Euler’s equation):

�
��ρ∂t~v + ρ~v ·∇~v = ~f −∇p.

We can use vector identity ~v · ∇~v = −~v × ~ω + ∇
(
v2

2

)
and the fact that ~f = ρ~g =

−ρgk̂ =⇒ ~g = −∇ϕ, where ϕ = gz, to show that:

−ρ~v× ~ω = −ρ∇(gz)−∇p− ρ∇
(
v2

2

)
=⇒

=⇒

←ρ const.

∇
(1

2ρv
2 + p+ ρgz

)
= ρ~v× ~ω =⇒

=⇒ ∇
(1

2ρΩ2r2 + p+ ρgz

)
= ~v× (2Ωk̂) = 2Ω2rr̂ =∇

(
Ω2r2

)
=⇒

=⇒ Ω2r2
(1

2ρ− 1
)

+ p+ ρgz = const. =⇒

This equation is valid everywhere in the fluid, since the Navier-Stokes equation is valid
everywhere in the fluid, and we haven’t introduced any further requirements than the
ones which are met everywhere in the fluid.

There has been a mistake I’m not able to see. The correct equation is slightly different:

−1
2ρΩ2r2 + p+ ρgz = const.
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Problem 5. Multipolar expansion.

a) Uniform flow. Consider a 2D flow in the xy-plane with ~v = Uî. Show
that in cartesian coordinates, the stream function is ψ = Uy and that the
velocity potential is Φ = Ux. Note the streamlines are straight lines in the
x-direction and that the Φ = const. lines are straight lines in the y-direction
and perpendicular to the ψ = const. lines.

b) Now consider an axially symmetric flow with ~v = Uêz. Show that in cylin-
drical coordinates (r, ϕ, z), the Stokes stream function and the velocity po-
tential are, respectively, ψ = −1

2r
2U and Φ = Uz. Then show that in

spherical coordinates (r, θ, ϕ), ψ = U r2

2 sin2 θ and Φ = Ur cos θ.

Solution for a):
As seen in class, the stream function satisfies:

U = vx = ∂yψ
0 = vy = −∂xψ

}
=⇒ ψ = Uy.

And the velocity potential satisfies:

U = vx = ∂xΦ
0 = vy = ∂yΦ

}
=⇒ Φ = Ux.

Solution for b):
The stream function, in cylindrical coordinates, satisfies:

U = vz = −1
r∂rψ

0 = vr = −1
r∂zψ

}
=⇒ ψ = −1

2Ur
2.

And the velocity potential satisfies:

U = vz = ∂zΦ
0 = vr = ∂rΦ

}
=⇒ Φ = Uz.

In spherical coordinates, the stream function satisfies:

U cos θ = vr = 1
r2 sin θ∂θψ

−U sin θ = vθ = − 1
r sin θ∂rψ =⇒ −Ur sin2 θ = ∂rψ

}
=⇒

=⇒ ψ = 1
2Ur

2 sin2 θ.

And finally, the velocity potential satisfies:

U cos θ = vr = ∂rΦ
−U sin θ = vθ = 1

r∂θΦ

}
=⇒ Φ = Ur cos θ.
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Problem 6.

c) Sources and sinks. Consider a 2D flow in polar coordinates having vr(r) =
− Q

2πr , with Q = const., and vϕ = 0. Start by confirming that Q is the
flow rate (per unit length along z) across any circumference centered at the
origin; recall the sign of Q determines whether you are a source (Q > 0) or
a sink (Q < 0).

Then show that ψ = Qϕ
2π and that Φ = Q

2π log r
r0

, where r0 is a cut-off length.

d) Now consider an axially symmetric flow having vr = Q
4πr2 , with Q = const.,

and vϕ = vθ = 0. Note we are using spherical coordinates (r, θ, ϕ). COnfirm
that Q is the flow rate through any spherical surface centered at the origin.

Then show that ψ = − Q
4π cos θ and that Φ = − Q

4πr .

Solution for c): ∮
∂B(r)

~v · n̂ dl =
∫ 2π

0

Q

2πrr dϕ = Q

2π2π = Q.

The stream function is given by:

Q
2πr = vr = 1

r∂ϕψ
0 = vϕ = −∂rψ

}
=⇒ ψ = Qϕ

2π .

And the velocity potential is given by:

Q
2πr = vr = ∂rΦ
0 = vϕ = 1

r∂ϕΦ

}
=⇒ Φ = Q

2π log r + C = Q

2π log r

r0
.

Solution for d):∮
∂B(r)

~v · d~S =
∮
∂B(r)

vrr̂ · r̂r2 sin θ dθdϕ = Q

4π

∫ π

0
dθ sin θ

∫ 2π

0
dϕ = Q

4π4π = Q.

The stream function is given by:

Q
4πr2 = vr = 1

r2 sin θ∂θψ
0 = vθ = − 1

r sin θ∂rψ

}
=⇒

=⇒ ψ = − Q4π cos θ.

And finally, the velocity potential is given by:

Q
4πr2 = vr = ∂rΦ

0 = vθ = 1
r∂θΦ

}
=⇒ Φ = − Q

4πr .
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