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Problem 1. Consider vector ~a. Show that ∇ × ~a = 2~v, where ~v is the dual
vector associated to the antisymmetric part of the second rank tensor ∇~a.

In fluid mechanics, the tensor ∇~v, with ~v the velocity, plays a relevant role. Its
antisymmetric part contains information about the rotation of material particles.
In fact, the dual vector associated to this antisymmetric part is the angular veloc-
ity of the material particle, which is half the vorticity at a point within the fluid.
In elasticity, the same ideas apply with the displacement vector ~u playing the role
of the velocity.

Solution:

We know that
(∇~a)ij = ∂iaj .

Therefore the antisymmetric part of tensor ∇~a is (component by component)

((∇~a)A)ij = 1
2((∇~a)ij − (∇~a)ji) = 1

2(∂iaj − ∂jai).

Finally, its associated dual vector multiplied by 2 (2~v) will be, by definition of the dual
vector: 

2vx = 2((∇~a)A)yz = ∂yaz − ∂zay
2vy = 2((∇~a)A)zx = ∂zax − ∂xaz
2vz = 2((∇~a)A)xy = ∂xay − ∂yax.

Now, we also know that
(∇× ~a)i = εijk∂jak,

from which we obtain the same components of twice the dual vector:
(∇× ~a)x = ∂yaz − ∂zay
(∇× ~a)y = ∂zax − ∂xaz
(∇× ~a)z = ∂xay − ∂yax.

Thus, ∇× ~a = 2~v.
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Problem 2. Consider Lautrup’s appendix D, which you can find posted as a
pdf in “campus virtual”.

a) Write down the φφ-component of ∇~a in the cylindrical basis.

b) Write down the φθ-component of ∇~a in the spherical basis.

c) Write down the φ-component of ∇ · ¯̄T , with ¯̄T a second rank tensor, in the
cylindrical basis.

d) The Laplacian of a vector ~a in the Cartesian basis is
∇2~a = ∇ · ∇~a = (∂xxax + ∂yyax + ∂zzax) êx + (∂xxay + ∂yyay + ∂zzay) êy +
+ (∂xxaz + ∂yyaz + ∂zzaz) êz. Using index notation, the k component is
∂i∂jak. Look at the Laplacian expression in the cylindrical and spherical
bases. There are additional terms compared to those in the Cartesian basis.
Very briefly explain why this is the case.

Solution for a):
(∇~a)φφ = 1

r
(∂φaφ + ar)

Solution for b):
(∇~a)φθ = 1

r sin θ∂φaθ −
aφ

r tan θ

Solution for c):

∇ · ¯̄T = ∇iTij êj =⇒ (∇ · ¯̄T )φ = ∂rTrφ + 1
r
∂φTφφ + ∂zTzφ + 1

r
Tφr + 1

r
Trφ

Solution for d):

There are additional terms in the Laplacian expression in cylindrical and spherical bases
because of the fact that the del operator (∇) in those other bases is developed by applying
the chain rule to the expresion in cartesian coordinates (which introduces “complexity” to
the operator) and when calculating the second partial derivatives in order to express the
Laplacian, all the basis vectors are no longer constant (their spatial variation matters),
as opposed to the natural (cartesian) basis.
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Problem 3. In class, we have considered material particles subjected to normal
and shear forces in mechanical equilibrium. Translational equilibrium requires∑ ~F = 0. Assuming the stress tensor is symmetric guarantees that the total
torque or momentum of force is ~M = 0.

In this problem we are going to look at this a bit more carefully; we will clearly
see that choosing ¯̄σ symmetric is one (very good) option, but that, in general, ¯̄σ
does not need to be symmetric. We will also practice with index notation adn
tensor calculus. As usual, use summation convention.

a) The total moment of force is

~M =
∫
V
~x× d~F =

∫
V
~x× ~f∗dV ′

where ~f∗ is the total specific (per volume) force, including body and contact
forces.

Show that the i-component of ~M is

Mi =
∫
v
εijkxj(fk + ∂lσkl)dV ′

where fk is the k-component of the body force.

b) Then, show that

Mi =
∫
V
εijk(xjfk + ∂l(xjσkl)− σkj)dV ′.

c) Use Gauss’s theorem to show that∫
V
εijk∂l(xjσkl)dV ′ =

∮
A

(~x× ¯̄σ · d~S)i.

d) Now, realize −εijkσkj = εijkσjk.

Using the results in (c) and (d), we then have:

~M =
∫
V
~x× ~fdV ′ +

∮
A
~x× ¯̄σ · d~S +

∫
v
êiεijkσjkdV

′.

In the absence of body forces, taking ¯̄σ symmetric guarantees that ~M = 0. In
this case, we showed in class that the second term is zero. The third term is also
zero, since a permutation of indices j, k changes the sign in εijk.

However, ~M = 0 does not require ¯̄σ to be symmetric. In the absence of body
forces, only the sum of the 2nd and 3rd tirms in ~M must vanish. There are, in
fact, generalizations of classical continuum theory that use non-symmetric stress
tensors. In classical continuum theory, however, we choose ¯̄σ symmetric and
develop a coherent theory with this selection.
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Solution for a):

Mi =
(∫

V
~x× ~f∗dV ′

)
i

=
∫
V

(~x× ~f∗)i dV ′ =

→ ( ~B× ~C)i=εijkBjCk

∫
V
εijkxjf

∗
k dV

′ =

→ f∗
i :=fi+∂jσij

∫
V
εijkxj(fk+∂lσkl) dV ′

Solution for b):

We must show that εijkxj∂lσkl = εijk(∂l(xjσkl)− σkj).

If we take into account that ~x = (x, y, z), then ∂ixj = δij , then it is clear that

εijk(∂l(xjσkl)−σkj) = εijk((∂lxj)σkl +xj(∂lσkl)−σkj) = εijk(δljσkl +xj(∂lσkl)−σkj) =

= εijk(σkj + xj(∂lσkl)− σkj) = εijkxj(∂lσkl).

Solution for c):

Gauss’s theorem in general states that∫
V
∂lTjkl dV

′ =
∮
A
Tjklnl dS.

In our case, if we take Tjkl = xjσkl, we get:∫
V
∂l(xjσkl) dV ′ =

∮
A
xj σklnl dS︸ ︷︷ ︸

=(¯̄σ· ~dS)k

=⇒

=⇒
∫
V
εijk∂l(xjσkl) dV ′ =

∮
A
εijkxj(¯̄σ · ~dS)k︸ ︷︷ ︸

=(~x×¯̄σ· ~dS)i

=⇒

=⇒
∫
V
εijk∂l(xjσkl) dV ′ =

∮
A

(~x× ¯̄σ · ~dS)i.

Solution for d):

If two of more of {i, j, k} are equal, then this is trivial.

Otherwise, consider the permutation (i, j, k). Then (i, j, k)(j, k) = (i, k, j) has the op-
posite sign of the original permutation, since we have transposed 2 elements of the
permutation. Since εijk gives us the sign of the permutation, this means −εijk = εikj .

Thus, we have:
−εijkσkj = εikjσkj

Since {j, k} are the indices we are summing over, we can change their names (in particular
swap them) and the result will be the same. In conclusion:

εikjσkj = εijkσjk

which proves the statement.
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Problem 4. Consider a rigid body rotation through angle φ around the z-axis.
In matrix form: x′y′

z′

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1


xy
z

 .
Note this rotation matrix is not the one associated to a rotation of axes, which we
call a passive rotation. In the case considered here, the basis remains the same;
it is the vector that is rotated by angle φ. We call this an active rotation.

Note also that the matrix above is the inverse of the matrix associated to a
rotation of axes by angle φ around the z-axis. You can easily visualize that an
active rotation by angle φ followed by a passive rotation of axes by the same angle
φ leaves the vector unchanged. Hence the matrices representing active and passive
rotations are inverses of one another; since the transformations are orthogonal,
we can also say they are transposes of one another.

a) Find the displacement field induced by the active rotation above.

b) Find grad ~u = (∇~u)T .

c) Remember that d~r′ = d~r + grad ~u · d~r. Confirm that |d~r′| = |d~r|; this
indicates there is no deformation of the body.

d) Confirm the strain tensor ¯̄u = 0 (you will need to use the full expression for
¯̄u; not Cauchy’s strain tensor).

Note: for slowing varying displacement fields, the angle φ is small, and to leading
order, grad ~u = (∇~u)T becomes antisymmetric. This connects to what we said in
class: For

∣∣∣∣ ∂ui∂xk

∣∣∣∣ � 1, grad ~u = ¯̄u + ¯̄w, where ¯̄u is Cauchy’s strain tensor and ¯̄w
is an antisymmetric tensor related to the rotation of material particles. In this
problem, since there is no deformation, for small φ, grad ~u = ¯̄w.

Solution for a):

~u(~r) = ~r′ − ~r =

cosφ− 1 − sinφ 0
sinφ cosφ− 1 0

0 0 0


xy
z

 =

(cosφ− 1) · x− sinφ · y
sinφ · x+ (cosφ− 1) · y

0


Solution for b):

grad ~u =

cosφ− 1 − sinφ 0
sinφ cosφ− 1 0

0 0 0


Solution for c):

d~r′ = d~r + grad ~u · d~r = (Id+ grad ~u) · d~r =⇒

=⇒ |d~r′| = |(Id+grad ~u)·d~r| =

∣∣∣∣∣∣∣
cosφ − sinφ 0

sinφ cosφ 0
0 0 1

 d~r
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
cosφ · drx − sinφ · dry

sinφ · drx + cosφ · dry
drz


∣∣∣∣∣∣∣ =
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=
√

(cosφ · drx − sinφ · dry)2 + (sinφ · drx + cosφ · dry)2 + dr2
z =

=
√

(sin2 φ+ cos2 φ)dr2
x + (sin2 φ+ cos2 φ)dr2

y + dr2
z =

=
√
dr2
x + dr2

y + dr2
z = |dr|

Solution for d):

We could show that each component is zero, by using the following expression:

uik = 1
2

[
∂ui
∂xk

+ ∂uk
∂xi

+
∑
l

∂ul
∂xi
· ∂ul
∂xk

]

However, we know from the definition of the strain tensor that

|d~r′|2 = |d~r|2 + 2
∑
i,k

uik dxidxk

and since we have shown that |d~r′|2 = |d~r|2, we have that∑
i,k

uik dxidxk = 0

and since {dxidxk}i,k are linearly independent, we have that

uik = 0 ∀i, k

which means that ¯̄u = 0.

Problem 5.

a) In class, we have considered the homogeneous (also called uniform) stretch-
ing along the x-direction of a solid clamped on its left-most side and having
an equilibrium length along this direction equal to L.

Write down Cauchy’s strain tensor, knowing that the stretch of the right-
most point of the solid is ∆L.

b) Consider the pure shear deformation of the solid considered in class (see
Fig. 1).

Write down Cauchy’s strain tensor (assume small deformations as we did in
class).

c) Now consider a simple shear deformation (see Fig. 2). Write down the
second rank tensor grad ~u = (∇~u)T , for small θ. You will see it is not
symmetric.

Obtain the symmetric and antisymmetric parts. Realize that the symmetric
part is Cauchy’s strain tensor.

The antisymmetric part informs about rotations of material particles. Since
it is a second rank tensor, we have a dual vector we can associate to it,
which we know is related to ∇×~u. We then see we can think of rotations in
terms of the antisymmetric part of grad ~u (or ∇~u), or in terms of the vector
∇× ~u.
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Solution for a):

Homogenous stretching along the x-direction keeping the left-most side clamped means
that

~r′ =

kxy
z


where k ∈ R is a constant.

Therefore:

~u(~r) = ~r′ − ~r =

(k − 1)x
0
0

 .
We have

grad ~u =

k − 1 0 0
0 0 0
0 0 0


and this lets us calculate Cauchy’s strain tensor:

¯̄u = 1
2(grad ~u+ (grad ~u)T ) =

→ grad ~u is symmetric

grad ~u

Since ∆L = (k − 1)L, we have that k − 1 = ∆L
L , and thus:

¯̄u =

∆L
L 0 0
0 0 0
0 0 0


Solution for b):

In questions b) and c) we will ignore the third dimension, due to the fact that the dis-
placement there is 0, and therefore the gradient of the displacement vector and Cauchy’s
strain tensor are zero in that direction.

The application that gives ~r′ as a function of ~r (the simple shear deformation) is a linear
application A that satisfies A(e1) = e1 + tan

(
θ
2

)
e2

A(e2) = tan
(
θ
2

)
e1 + e2.

Therefore:
~r′ = A~r where A =

 1 tan
(
θ
2

)
tan

(
θ
2

)
1


and

~u(~r) = ~r′ − ~r =

 0 tan
(
θ
2

)
tan

(
θ
2

)
0

~r ≈ (
0 θ

2
θ
2 0

)
~r = θ

2

(
y
x

)
.
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Let’s calculate the gradient of the displacement vector in order to calculate the strain
tensor:

grad ~u = θ

2

(
0 1
1 0

)
.

Due to the fact that it is a symmetrical second-rank tensor, we conclude that the strain
tensor is

¯̄u = 1
2(grad ~u+ (grad ~u)T ) = grad ~u

Solution for c):

In this case the application B which gives ~r′ as a function of ~r is also linear, and satisfies{
B(e1) = e1

B(e2) = tan(θ)e1 + e2.

Therefore:
~r′ = B~r where B =

(
1 tan(θ)
0 1

)
and

~u(~r) = ~r′ − ~r =
(

0 tan(θ)
0 0

)
~r ≈

(
0 θ
0 0

)
~r =

(
θy
0

)
.

At this point we can calculate the gradient of the displacement vector:

grad ~u =
(

0 θ
0 0

)

which is not symmetric if θ 6= 0.

Let’s get the symmetric and antisymmetric parts:
(grad ~u)S = 1

2
(
grad ~u+ (grad ~u)T

)
= θ

2

(
0 1
1 0

)

(grad ~u)A = 1
2
(
grad ~u− (grad ~u)T

)
= θ

2

(
0 1
−1 0

)
.

As we saw in theory, Cauchy’s strain tensor is defined as ¯̄u := 1
2

(
∇~u+ (∇~u)T

)
, so the

antisymmetric part of the gradient is indeed Cauchy’s strain tensor, due to the fact that
∇~u = (grad ~u)T .

8



Problem 6. Consider the displacement field ~u = (Ax+ Cy,Cx−By, 0), where
A, B, C are small constants.

a) Compute Cauchy’s strain tensor.

b) Find a condition to ensure that the volume remains constant.

c) Determine, in this case, the principal strain axes and the relative length
change along the principal directions.

Solution for a):

grad ~u =

A C 0
C −B 0
0 0 0


¯̄u =

→ grad ~u is symmetric

grad ~u

Solution for b): In theory class we saw that when the deformation is small enough,
one condition to have incompressibility is that ∇ · ~u = 0. In this particular case, this
gives us the following condition:

A−B = 0 =⇒ A = B.

Solution for c): Let’s find the principal strain axes (which correspond to the eigenvec-
tors of ¯̄u):

A trivial eigenvector is êz with associated eigenvalue 0, since ¯̄u · êz = 0

Let’s find the eigenvalues with the following equation:

det
(

¯̄u− λ ¯̄I
)

= 0 ⇐⇒ 0 = det

A− λ C 0
C −B − λ 0
0 0 −λ

 = −λ((A−λ)(−B−λ)−C2) ⇐⇒

⇐⇒
{
λ = 0, or
(A− λ)(−B − λ)− C2 = 0 ⇐⇒ λ2 − (A−B)λ−AB − C2 = 0 ⇐⇒

⇐⇒ λ± = A−B ±
√
A2 +B2 − 2AB − 4(−AB − C2)

2 =

= 1
2

(
A−B ±

√
(A+B)2 + 4C2

)
.

λ = 0, λ+ and λ− are the principal strain values, and if we suppose A = B (the condition
we found for volume to be conserved) we have

λ± = ±1
2

√
(2A)2 + 4C2 = ±

√
A2 + C2
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and their corresponding directions are given by the following equations:

(¯̄u− λ+
¯̄I)v+ = 0 ⇐⇒


A−
√
A2 + C2 C 0
C −A−

√
A2 + C2 0

0 0 −
√
A2 + C2

 v+ = 0 ⇐⇒

⇐⇒ [v+] =
[(
− C
A−
√
A2+C2 , 1, 0

)]

(¯̄u− λ− ¯̄I)v− = 0 ⇐⇒


A+
√
A2 + C2 C 0
C −A+

√
A2 + C2 0

0 0
√
A2 + C2

 v− = 0 ⇐⇒

⇐⇒ [v−] =
[(
− C
A+
√
A2+C2 , 1, 0

)]
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