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Problem 1. In this problem we are going to work a bit with the continuity
equation.

a) Show that constant density implies the fluid is incompressible. That is, show
that ρ = cte. =⇒ ∇ · ~v = 0.

b) Now consider an incompressible fluid. Show that this implies that the La-
grangian derivative of the density is zero. That is, that dρ

dt = 0.

This means that the density of a fluid particle, which moves with the fluid, has
constant density. It does not mean that the density of a fixed fluid region is
constant. In fact, for incompressible fluids, the local (or Eulerian) rate of change
of the density is related to its spatial variation, that is, ∂ρ

∂t = −~v ·∇ρ.

Solution for a):
The continuity equation is

∂ρ

∂t
+∇ · (ρ~v) = 0.

By imposing ρ = cte., we obtain:

0 + ρ∇ · ~v = 0 =⇒ ∇ · ~v = 0.

Solution for b):
An alternative expression for the continuity equation shown in theory class is as follows:

dρ

dt
+ ρ∇ · ~v = 0.

This was derived easily by using the identity for the divergence of a scalar fields times
a vectorial field, and also by using the definition of the total derivative (also known as
material derivative).

Since the fluid is incompressible, this means that ∇ · ~v = 0, and therefore:

dρ

dt
= 0.
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Problem 2. In this problem we are going to work a bit with the equation
of motion of a fluid. That is, with Newton’s second law applied to a material
particle.

a) Start by using index notation and showing that

∇ · (ρ~v~v) = ρ~v ·∇~v + ~v∇ · (ρ~v).

Solution:
The j-component of the right-hand side in index notation is:

(RHS)j = ρvi∂ivj + vj∂i(ρvi) = ρvi∂ivj + vivj∂iρ+ ρvj∂ivi,

and the j-component of the left-hand side is:

(LHS)j = ∂i(ρvivj) = vivj∂iρ+ ρvj∂ivi + ρvi∂ivj .

Both expressions are the same ∀j, so (LHS) = (RHS).

b) Then use what we called in class Reynolds’ transport theorem, which is
nothing but Leibniz’s rule generalized to 3-dimensions, together with the
continuity equation, to show that

d

dt

∫
V (t)

ρ~v dv =
∫
V (t)

ρ
d~v

dt
dv

where we have written V (t) to emphasize that the volume co-moves with
the fluid.

Using this result, Newton’s second law applied to a material particle be-
comes:

ρ
d~v

dt
= ~f∗ = ~f +∇ · ¯̄σ = ρ

(
∂~v

∂t
+ ~v ·∇~v

)
where we have used the relation between total (Lagrangian) and local (Eu-
lerian) accelerations in the last step, and the fact that the stress tensor is
symmetric. This equation governs the behavior of all continuous matter.

Solution:
Via Reynolds’ transport theorem, we have:

d

dt

∫
V (t)

ρ~v dv =
∫
V (t)

∂t(ρ~v) dv +
∫
∂V (t)

(~v · n)ρ~v dS =

=
∫
V (t)

(
ρ
d~v

dt
+ ∂ρ

∂t
~v

)
dv +

∫
∂V (t)

(~v · n)ρ~v dS =

→ Eq. of continuity

=
∫
V (t)

ρ
d~v

dt
dv −

∫
V (t)
∇ · (ρ~v) dv +

∫
∂V (t)

(~v · n)ρ~v dS =

→ Divergence th.

=
∫
V (t)

ρ
d~v

dt
dv −

∫
∂V (t)

(ρ~v · n) dS +
∫
∂V (t)

(~v · n)ρ~v dS =
∫
V (t)

ρ
d~v

dt
dv.
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c) Let’s now consider a fluid. We first separate out of the stress tensor the part
corresponding to the pressure stresses, which are the only ones acting in the
absence of acceleration, that is, for a fluid at rest or in uniform translational
motion. Then:

σij = −pδij + σ′ij

where ¯̄σ′ is called the viscosity stress tensor, which is the part of the stress
tensor resulting from the deformation of the elements of the fluid. Since ¯̄σ is
symmetric, and so is −p ¯̄I, the viscosity stress tensor ¯̄σ′ is also symmetric. In
addition, ¯̄σ′ = f(¯̄e), where ¯̄e = ¯̄t+ ¯̄d is the strain rate tensor [remember ¯̄G =
grad~v = ¯̄e+ ¯̄w], with ¯̄t and ¯̄d its spherical and deviatoric parts, respectively.

Show that for a Newtonian fluid, the ij component of the viscosity stress
tensor is:

σ′ij = Aijklekl = 2Aeij +Bellδij

where Aijkl is a fourth rank tensor, and A and B are fluid properties. We
call A the viscosity (we usually denote it as η), and define ξ = 2

3η + B as
the second viscosity.

Hint: use that fluids are isotropic; this imples that Aijkl is an isotropic
tensor. Then use that ¯̄σ′ is symmetric. Note this proof mimics the derivation
of Hooke’s law for linearly and isotropic elastic materials.

With these definitions of η and ξ, we have:

σ′ij = η

(
2eij −

2
3ellδij

)
+ ξellδij .

We then see that for incompressible fluids: σ′ij = 2ηeij .

Solution:
Since ¯̄A is an isotropic tensor, it must be expressed in terms of δij (2nd-rank isotropic
tensor) for it to be independent of the direction of the axis:

Aijkl = c1δijδkl + c2δikδjl + c3δilδjk.

Also, since we know that ¯̄σ′ is symmetric, this means c2 = c3, and then:

Aijkl = c1δijδkl + c2(δikδjl + δilδjk).

Let’s call c1 =: B and c2 =: A. This lets us conclude:

σ′ij = Aijklekl = (c1δijδkl + c2(δikδjl + δilδjk))ekl = c1δijekk + c2eij + c2eji =

→ ¯̄e symmetric

= 2Aeij +Bellδij .
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d) Use index notation to show that the divergence of the viscosity stress tensor
is:

∇ · ¯̄σ′ = η∇2~v +
(
η

3 + ξ

)
∇(∇ · ~v).

Using this fact, we arrive at the Navier-Stokes equation, which is nothing
but Newton’s second law (or the equation of motion) for a Newtonian-fluid
particle:

ρ

(
∂~v

∂t
+ ~v ·∇~v

)
= ~f −∇p+ η∇2~v +

(
η

3 + ξ

)
∇(∇ · ~v).

For incompressible fluids, we then have:

ρ

(
∂~v

∂t
+ ~v ·∇~v

)
= ~f −∇p+ η∇2~v.

For fluids at rest or in uniform translational motion this equation becomes
the usual equation describing hydrostatic equilibrium: ~f = ρ~g = ∇p. Note
that this equation is also nothing but the expression of mechanical equilib-
rium: ~f +∇ · ¯̄σT = ~f +∇ · ¯̄σ = 0, considering ¯̄σ is symmetric and that for
fluids at rest or in uniform translational motion ¯̄σ = −p ¯̄I.

There are other interesting forms and limiting cases of the Navier-Stokes
equations; we’ve discussed some of them in class.

Solution:
The right hand side can be transformed into the following expression:

RHS =
(4η

3 + ξ

)
(∇(∇ · ~v))− η∇× (∇× ~v),

so the j-component of the right hand side in index notation is:

(RHS)j =
(4η

3 + ξ

)
∂j∂ivi − ηεjbc∂bεcde∂dve =

=
(4η

3 + ξ

)
∂j∂ivi − ηεjbcεcde∂b∂dve =

=
(4η

3 + ξ

)
∂j∂ivi − η(δjdδbe − δjeδbd)∂b∂dve =

=
(4η

3 + ξ

)
∂j∂ivi − ηδjdδbe∂b∂dve + ηδjeδbd∂b∂dve =

=
(4η

3 + ξ

)
∂j∂ivi − η∂b∂jvb + η∂b∂bvj =

=
(
η

3 + ξ

)
∂j∂ivi + η∂b∂bvj .

The j-component of the left hand side in index notation is:

(LHS)j = ∂iσ
′
ij = ∂i

(
η

(
2eij −

2
3ellδij

)
+ ξellδij

)
=
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= η

(
∂i∂jvi + ∂i∂ivj −

2
3∂j∂lvl

)
+ ξ∂j∂lvl =

=
(
η

3 + ξ

)
∂j∂ivi + η∂b∂bvj = (RHS)j .

Problem 3. Consider the interface between two “real” fluids. We stated in class
what the boundary conditions are for both velocity and stresses in this case. We
wrote the continuity of tangential stresses at the interface as: (¯̄σ1 ·n̂)· t̂ = (¯̄σ2 ·n̂)· t̂.

a) Start by showing that the condition can be written as:

(¯̄σ′1 · n̂) · t̂ = (¯̄σ′2 · n̂) · t̂,

where ¯̄σ′ is the viscosity stress tensor.

b) Now consider that the fluids are incompressible, that the interface lies in
the xz plane, and that ~v is locally (near the interface) along the x-direction
and a function of the y-coordinate only [~v = (vx(y), 0, 0)]. Show that the
continuity of tangential stresses can be written as:

η1∂yv
(1)
x = η2∂yv

(2)
x .

c) If η1 > η2, sketch how the velocity profile for both fluids will look like near
the interface.

d) How will the velocity profile look like if fluid 2 is an “ideal” fluid?

Solution for a):
By definition we have that ¯̄σ = −p ¯̄I + ¯̄σ′. Therefore:

(¯̄σ · n̂) · t̂ = (¯̄σ′ · n̂) · t̂+ p( ¯̄I · n̂) · t̂ = (¯̄σ′ · n̂) · t̂,

since all the off-diagonal components of ¯̄I are zero.

Solution for b):
Let’s reproduce the proof done in class. In either one of the fluids we have

∇~v = ∂yvx(y)ĵ î −→ ¯̄e = 1
2∂yvx(y)(ĵ î+ îĵ).

Since ¯̄σ′ = 2η¯̄e, we obtain:
¯̄σ′ = η∂yvx(y)(ĵ î+ îĵ).

Finally, imposing the boundary condition which we proved in section a), taking into
account that n̂ = ĵ and choosing t̂ = î, we have:

η1∂yv
(1)
x (y) = η2∂yv

(2)
x (y),

which is what we wanted to prove.

Solution for c):
Since η1 > η2:

∂yv
(1)
x < ∂yv

(2)
x .
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Figure 1: Sketch of the velocity profile when η1 > η2.

Solution for d):
If fluid 2 is an “ideal” fluid, this means η2 = 0, and therefore:

∂yv
(1)
x = 0,

and this means v(1)
x will be constant locally near the interface.

We don’t have more information about fluid 2, so we don’t know its velocity profile.

Figure 2: Sketch of the velocity profile when η2 = 0.
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Problem 4. (Water flowing down an inclined solid surface behaves as a Newto-
nian incompressible fluid.)

Consider the flow field shown in figure 1.

a) If the velocity profile takes the form

u = U

[
a+ b

y

H
−
(
y

H

)2
]

where U is the velocity of the free surface, determine the constants a and b.

b) Confirm that the flow is incompressible.

c) Is the flow irrotational? If not, find its vorticity.

d) Compute the magnitude of the shear stress that water exerts on the solid
surface and on the free surface.

Solution for a):
Let’s impose the boundary conditions to determine the constants. Since there isn’t slip
at the interface between the solid and the fluid, we have:

0 = u(y = 0) = a.

At the free surface, we can apply the boundary condition written in the problem state-
ment:

U = u(y = H) = U(b− 1) =⇒ b = 2.

Therefore:
u = U

[
2 y
H
−
(
y

H

)2
]
.

Solution for b):
∇ · ~v =∇ ·

(
uî
)

= ∂xu = 0.

Solution for c):

∇× ~v =

∣∣∣∣∣∣∣
î ∂x u

ĵ ∂y 0
k̂ ∂z 0

∣∣∣∣∣∣∣ =

 0
∂zu
−∂yu

 =
(
−2U 1

H
+ 2U y

H2

)
k̂ = −2U

H

(
1− y

H

)
= ~w 6= 0.

Therefore, the flow is rotational.

Solution for d):
Since ¯̄e = 1

2(∇~v + (∇~v)T ), we have:

¯̄σ = −p ¯̄I + 2η¯̄e = −p ¯̄I + η∂yu(̂iĵ + ĵ î) =⇒

=⇒ σxy = η∂yu = 2ηU
H

(
1− y

H

)
.
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In conclusion: σxy(0) = 2ηU
H

,

σxy(H) = 0.

Problem 5. In this problem, we are going to look at planar Poiseuille flow.
Consider two parallel plates separated a distance a along the y-axis and a New-
tonian incompressible fluid of density ρ and viscosity η that flows between them
in the positive x-direction. The flow is driven by a pressure difference ∆p applied
over a length L.

a) Show that the velocity profile is:

vx(y) =
∣∣∣∣∆pL

∣∣∣∣ 1
2η (ay − y2).

b) Obtain the flow rate per unit length-along-the-z-axis, Qlength.

c) Show that the average fluid-speed, which is Qlength
a , is equal to 2

3 the maxi-
mum speed.

The flow rate and the cross-sectional area are often used to obtain the character-
istic speed of the flow. In this problem, Qlength and the plate-plate separation a
define a characteristic speed U , which is 〈vx〉.

Solution:
Due to the symmetries of the problem, we have ~v = vx(y)̂i. As we are in a 1D-flow in a
stationary state, we have that ∂xp = c, which means:

∂xp = ∆p
L
.

If we impose the Navier-Stokes equation we get:

0 = ~f −∇p+ η∇2~v =⇒

=⇒


∆p
L = η∂yyvx,

∂yp = −ρg,
∂zp = 0.

By integrating twice the first equation we get:

vx(y) = ∆p
L

y2

2η − c1
y

η
− c2
η

= 0.

Now, by imposing the no-slip boundary conditions in the walls, we get that:
0 = vx(0) = −c2

η
=⇒ c2 = 0,

0 = vx(a) = ∆p
L

a2

2η − c1
a

η
=⇒ c1 = ∆p

L

a

2 ,
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and thus:
vx(y) = ∆p

L

y2

2η + ∆p
L

ay

2η =
∣∣∣∣∆pL

∣∣∣∣ 1
2η (ay − y2).

The flow rate is:
Q =

∫
A
~v · d~S =

∫
Z

∫ a

0
vx(y) dy dz =⇒

=⇒ Qlength =
∣∣∣∣∆pL

∣∣∣∣ 1
2η

∫ a

0

(
ay − y2

)
dy =

∣∣∣∣∆pL
∣∣∣∣ a3

12η .

Finally, we have that the average fluis speed is:

〈vx〉 = 1
|[0, a]|

∫ a

0
vx(s) ds = 1

a
Qlength =

∣∣∣∣∆pL
∣∣∣∣ a2

12η .

We can get the maximum speed by imposing:

v′x(y) = 0 =⇒ y = a

2 =⇒ vmax
x =

∣∣∣∣∆pL
∣∣∣∣ a2

8η .

In conclusion, combining the 2 previous results it is clear that:

〈vx〉 = 2
3v

max
x .
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