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Problem 1. A liquid is subjected to the following velocity gradient:

∇~v = (grad~v)T =

 α β 0
−β

2 −α
2 0

0 0 0

 ,
where α, β ∈ R. It is clear that the flow is two-dimensional.

Characterize local deformation rates, that is, calculate local strain rates (elonga-
tions, which are often called dilations, and shear). Characterize also local rotation
rates.

Solution:
We can calculate the symmetric and antisymmetric parts of grad~v:

¯̄e = 1
2[∇~v + (∇~v)T ] =

 α 1
4β 0

1
4β −1

2α 0
0 0 0

 ,

¯̄w = 1
2[−∇~v + (∇~v)T ] =

 0 −3
4β 0

3
4β 0 0
0 0 0

 .
The diagonal terms of ∇~v (which are the same as the ones in ¯̄e) represent the relative
change in elongation of the fluid element in each direction, so that means that locally:

∆lx
lx
≈ α∆t,

∆ly
ly
≈ −1

2α∆t,

∆lz
lz

= 0.

Therefore, we know the fluid elongates along the x-direction, and dilates along the y-
direction. Also, given that Tr ¯̄e = 1

2α, we know the fluid behaves in an incompressible
manner only if α = 0.
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We also know that the off-diagonal terms of ¯̄e are related to local shear. In effect, we
know that locally the change of a 90° angle with respect to time is

dγ

dt
= −2e12 = −1

2β.

Finally, ¯̄w characterizes local rotation rates. In fact, the dual vector associated with ¯̄w
(~w) lets us define the vortex vector ~Ω = 1

2 ~w which represents the local angular velocity
of rotation of a fluid element. Thus, we have:

~Ω = 1
2 ~w =

 0
0

3
4β

 .

Problem 2. In this problem, we are going to work a bit more with Stokes’ stream
function; that is, the stream function for incompressible flows with axisymmetry.

a) Consider cylindrical coordinates (r, φ, z) and a flow in the rz-plane (a flow
with cylindrical, or axial, symmetry about the z-axis).

Verify that by choosing the stream function such that vr = 1
r∂zψ and vz =

−1
r∂rψ, the incompressibility condition is automatically fulfilled.

Then show that the velocity derives from the potential vector ~A = −1
rψêφ.

b) Now consider spherical coordinates (r, θ, φ) and a flow in the rθ plane (a
flow with azimuthal symmetry).

Verify that by choosing the stream function such that vr = 1
r2 sin θ∂θψ and

vθ = − 1
r sin θ∂rψ, the incompressibility condition is automatically fulfilled.

Then show that the velocity derives from the potential vector ~A = 1
r sin θψêφ.

Solution:
We will show a more general result which includes the 2 previous cases:

Suppose we have a transformation from the cartesian coordinates (x, y, z) to a new set
of orthogonal coordinates (q1, q2, q3). Let’s call the inverse transformation ϕ, which is a
parametrization of a domain of R3 such that:

ϕ : U → R3

(q1, q2, q3) 7→ (x, y, z).

Then this parametrization has an associated second-rank metric tensor in each point
called the matric tensor defined as gij = ϕi · ϕj , where ϕi = ∂iϕ. This tensor is similar
to the first fundamental form of surfaces, because it gives us the metrics in the new
coordinate system.

Since the new coordinate system is orthogonal, by definition the only non-zero compo-
nents of the tensor are the ones in the diagonal. Then, thanks to the development done
at [1] we can calculate the rotational of a vector field V expressed in the new coordinate
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system as:

∇× V = 1√
det ¯̄g

∣∣∣∣∣∣∣
q̂1
√
g11 ∂q1 V1

√
g11

q̂2
√
g22 ∂q2 V2

√
g22

q̂3
√
g33 ∂q3 V3

√
g33

∣∣∣∣∣∣∣ .
If we define hi := gii, we can express the previous formula in a more compact form:

∇× V = 1
h1h2h3

∣∣∣∣∣∣∣
q̂1h1 ∂q1 V1h1
q̂2h2 ∂q2 V2h2
q̂3h3 ∂q3 V3h3

∣∣∣∣∣∣∣ .
Now, we’ll state the more general result: under the previous assumptions, given a func-
tion ψ (called the stream function) and a potential vector ~A = 1

hi
ψêqi , then the conditions

that ψ should satisfy so the fluid is incompressible are:

~v =∇× ~A = 1
h1h2h3

∣∣∣∣∣∣∣
q̂1h1 ∂q1 A1h1
q̂2h2 ∂q2 A2h2
q̂3h3 ∂q3 A3h3

∣∣∣∣∣∣∣ = 1
h1h2h3

∣∣∣∣∣∣∣
q̂1h1 ∂q1 ψδ1i
q̂2h2 ∂q2 ψδ2i
q̂3h3 ∂q3 ψδ3i

∣∣∣∣∣∣∣ .
This is because since the divergence of the rotational of a vector field is 0, the fluid would
be automatically compressible if it satisfies these conditions.

Solution for a):

∇× ~A = −1
r

∣∣∣∣∣∣∣
r̂ ∂r −Ar
rφ̂ ∂φ r(−Aφ)
ẑ ∂z −Az

∣∣∣∣∣∣∣ = −1
r

∣∣∣∣∣∣∣
r̂ ∂r 0
rφ̂ ∂φ ψ
ẑ ∂z 0

∣∣∣∣∣∣∣ =

 1
r∂zψ

0
−1
r∂rψ

 = ~v,

which confirms that the velocity ~v derives from the potential vector ~A, and automatically
we have that the fluid is incompressible (it can also be manually checked by calculating
∇ · ~v and checking it is equal to zero, but we’ve already shown it is true).

Solution for b):

∇× ~A = 1
r2 sin θ

∣∣∣∣∣∣∣
r̂ ∂r Ar
rθ̂ ∂θ rAθ

r sin θφ̂ ∂φ r sin θAφ

∣∣∣∣∣∣∣ = 1
r2 sin θ

∣∣∣∣∣∣∣
r̂ ∂r 0
rθ̂ ∂θ 0

r sin θφ̂ ∂φ ψ

∣∣∣∣∣∣∣ =

 1
r2 sin θ∂θψ

0
− 1
r sin θ∂rψ

 = ~v,

which confirms that the velocity ~v derives from the potential vector ~A, and automatically
we have that the fluid is incompressible.
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Problem 3. The velocity field of a certain two-dimensional vortex, in polar
plane coordinates, is given by:

vr = 0,

vθ =


Ωr
2 , r < a,

Ωa2

2r , r > a,

where a is the extension of the vortex core and Ω measures the vortex intensity.

a) Show that the flow is incompressible and compute the stream function.

b) Compute and draw schematically the streamlines and the particle trajecto-
ries.

c) Compute the vorticity and the velocity potential in the region where it can
be defined.

Solution for a):

∇ · ~v = 1
r

[∂r(rvr) + ∂θ(vθ)] = 1
r

[0 + 0] = 0,

so the flow is incompressible.

From the theoretical development done in class, we know the stream function satisfies:{
rvr = ∂θψ, (1)
−vθ = ∂rψ. (2)

Subtituting the velocity field in (1) we obtain:

0 = ∂θψ =⇒ ψ = c̃+ g(r).

We can now substitue both the velocity field and the previous expression in (2).

For r ≤ a:
−Ωr

2 = ∂r(c+ g(r)) = g′(r) =⇒ g(r) = −Ωr2

4 + d.

For r > a:
−Ωa2

2r = g′(r) =⇒ g(r) = −Ωa2

2 log(r) + d̃.

Since ψ has to be differentiable (and therefore continuous), we have that:

−Ωa2

4 + d = −Ωa2

2 log(a) + d̃ =⇒ d̃ = d− Ωa2

2

(1
2 − log(a)

)
,

and thus:

ψ(r) =


−Ωr2

4 + c, r ≤ a

−Ωa2

2

(
log

(
r

a

)
+ 1

2

)
+ c, r > a
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where c ∈ R is a constant.

Solution for b):
The streamlines are given by the set of points satsfying ψ = const.

Therefore, for r ≤ a:

Ωr2

4 + c = C =⇒ r =
( 4

Ω(C − c)
) 1

2
= const,

and this means streamlines are concentric circles with center 0.

For r > a:
Ωa2

4

(
log
(
r

a

))
+ c = C =⇒ r = const,

and this means streamlines are again concentric circles with center 0.

With regards to the particle trajectories, these are the curves γ(t) solution to the fol-
lowing Cauchy problem: 

γ̇(t) = v(γ(t)), (1)

γ(0) = p0 =
(
r0

θ0

)
, (2)

which by Picard’s theorem exist and are unique when the initial condition p0 is fixed
(because ~v is globally Lipschitz).

Let’s find their parametrization (in this section, Fi(t) means the i-component of F (t)
and not its partial derivative with respect to i).

If we take a look into the radial component of the trajectory/curve:

(1) =⇒ γ̇r(t) = 0 =⇒ γr(t) = c = r0.

Therefore, particles will always move in trajectories inscribed in a circle.

Now, for particles for which r ≤ a:

(1) =⇒ γ̇θ(t) = 1
2Ωγr(t) =⇒ γθ(t) = 1

2Ωr0t+ d,

where d ∈ R is a constant. If we impose the initial condition, we find

θ0 = γθ(0) = d.

Note that the origin is a stagnation point.

For points in which r > a:

(1) =⇒ γ̇θ(t) = 1
2γr(t)

Ωa2 =⇒ γθ(t) = 1
2r0

Ωa2t+ d,

where d ∈ R is a constants. If we impose the initial condition, we find

θ0 = γθ(0) = d.
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Therefore, the particle trajectories are:

γ(t) =



 r0
1
2r0Ωt+ θ0

 , r0 ≤ a, r0
a2

2r0
Ωt+ θ0

 , r0 > a.

r = a

v

Figure 1: Drawing showing the streamlines and particle trajectories (which are the
same), along with the velocity profile.

Solution for c):

~ω =∇× ~v = 1
r

∣∣∣∣∣∣∣
r̂ ∂r 0
rθ̂ ∂θ rvθ
ẑ ∂z 0

∣∣∣∣∣∣∣ = 1
r

−r∂zvθ0
∂r(rvθ)

 = 1
r

 0
0

∂r(rvθ)

 = ∂r(rvθ)êz =⇒

~ω =


∂r

(Ω
2 r

2
)

= Ωr, r < a,

∂r

(
Ωa2

2

)
= 0, r > a.

Note that ~ω is not generally defined at points in which r = a, because ~v isn’t differentiable
there. The only case in which it is differentiable is the following:

lim
r→a−

∂rv = lim
r→a+

∂rv ⇐⇒
Ω
2 = −Ω

2 ⇐⇒ Ω = 0,

which corresponds to the case in which the velocity field is exactly 0 in all points (the
fluid is still), which is a degenerate case.
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In the subset {(r, θ, z) : r > a} ⊂ R3 the vorticity vector is ~w = 0, and so we can define
the velocity potential Φ (which satisfies ~v =∇Φ). Let’s find it: 0

Ωa2

2r

 = ~v =∇Φ =

 ∂rΦ
1
r
∂θΦ

 =⇒

 Φ = g(θ) + c̃
Ωa2

2 = g′(θ) =⇒ g(θ) = 1
2Ωa2θ + d

 =⇒

=⇒ Φ(r, θ, z) = 1
2Ωa2θ + c,

where c ∈ R is a constant.

Problem 4. In class, we have analyzed the flow ~v = (ax,−ay, 0), with a ∈ R.
In this case,

¯̄G = grad~v =
(
a 0
0 −a

)
= ¯̄e = dev ¯̄e.

We have also analyzed flow with stream function ψ = c(y2 − x2), with c ∈ R. In
this case,

¯̄G = grad~v =
(

0 2c
2c 0

)
= ¯̄e = dev ¯̄e.

Prove that if a = 2c, the two flows are the same except for a π
4 rotation. This

illustrates that we can think of pure shear flow as pure elongational flow along
directions oriented at π

4 relative to the original directions.

Solution:
For the first flow, we saw in class that the streamlines were the hyperbolas

y = b

x
, b ∈ R,

and that the origin was a stagnation point. We also saw that particles followed the
following trajectories:

γ(t) =

 x0e
at

y0e
−at

z0

 ,
depending on the initial position (x0, y0, z0) at time 0 (since a is constant, the ODE is
autonomous).

For the first flow, we can easily calculate the streamlines due to the fact that in them
the stream function is constant. This gives us the following streamlines:

y = ±
√
x2 + c,

where c ∈ R is a constant.

Also, in class we calculated the velocity field (modulus a sign), which is:

~v = 2c(y, x).

If we impose a = 2c, we have ~v = a(y, x), then the field ~v2 resulting of a π
4 rotation

around the center will satisfy the following formula (where we’ve taken into account the
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rotation of the 3-dimensional space and the rotation of the free vectors):

~v2 = A~v(A−1(x, y)),

where A is the rotation matrix of angle θ = −π
4 .

A−1(x, y) =
(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)(
x
y

)
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
,

A~v(A−1(x, y)) = a

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
0 1
1 0

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
=

= a

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
− sin(θ)x+ cos(θ)y
cos(θ)x+ sin(θ)y

)
= a

(
−2 sin(θ) cos(θ)x+ (cos2(θ)− sin2(θ))y
(cos2(θ)− sin2(θ))x+ 2 sin(θ) cos(θ)y

)
=

= a

(
x
−y

)
.

Therefore, the flow is the same in both cases, rotated by an angle θ = −π
4 (the minus is

there because the rotation is anticlockwise).

Problem 5. Show that the vorticity flux,
∫
A ~ω · d~S, is constant along a vorticity

tube.

Solution:
Let’s consider 2 sections of the tube S1, S2, and the lateral surface along the stream tube
SL. Then, since ∇ · ~ω = 0 everywhere, using the Divergence Theorem we have that:

0 =
∫
V
∇ · ~ω dv =

∮
S1∪S2∪SL

~ω · d~S =
∫
S1
~ω · d~S +

∫
S2
~ω · d~S +

∫
SL

~ω · d~S.

Since the lateral surface is the surface of the vortex tube, which is a surface formed by
the vortex lines (lines parallel to the vorticity vector), the normal vector to the surface
is perpendicular to the vorticity vector, and thus the flux of the vorticity vector through
the the lateral surface is zero. Thus, we have:∫

S1
~ω · d~S +

∫
S2
~ω · d~S = 0,

where the orientation of d~S is the one which points outside of the volume V enclosed
by the surface S1 ∪ S2 ∪ SL. If we take the orientation of the normal vector to the
surface such that ~n · ~w ≥ 0, we have to reverse one of the normal vectors in the previous
expression, and we get: ∫

S1
~ω · d~S =

∫
S2
~ω · d~S,

which is what we wanted to prove.
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