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Problem 1. In this problem, we are going to compare the relative importance
between stretching and bending a beam. To do this, consider a long beam oriented
along the positive z-direction that is clamped on its left-most point. Neglect
gravity.

1. If we apply a stretching force Fz on the right-most point of the beam, show
that the displacement at that point can be written as

uz = Fz
A

L

Y
,

with L the length of the beam, A the cross-sectional area and Y the Young’s
modulus.

2. If we instead apply a downward force (along the Y-direction) Fy on the
right-most point of the beam, show that the displacement is

uy(z = L) = L3Fy
3Y I ≈

L3Fy
3Y A2 ,

where we have taken I ≈ A2 in the last step.

This implies: ∣∣∣∣∣uzuy
∣∣∣∣∣ ≈ A

L2

∣∣∣∣∣FzFy
∣∣∣∣∣ .

Hence, for long beams (A � L2) and comparable stretching and bending forces
(
∣∣∣Fz
Fy

∣∣∣ ≈ 1), we see that |uz| � |uy|. This imples that the longitudinal displacement
is always negligible compared to the transverse (due to bending) displacement.

Solution for a):
We have that σzz = Fz

A = Y uzz by Hooke’s law, and all the other components of the
stress vector are zero. Therefore, uzz = Fz

AY .

Since uzz = duz
dz , we have

uz =
∫ R

0
uzzdz = FzL

AY
.
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Problem 2. Consider a cylindrical beam of length L and cross-sectional radius R
oriented along the positive êz direction and made of an isotropic and homogeneous
elastic material with Lame coefficients λ and µ. We fix the left-most end of
the beam, which is located at z = 0, such that the diplacement vector in the
corresponding cross-section is zero. The other end, located at z = L, is subjected
to a force (per unit area) ¯̄σ · êZ |r=R = σLêφ, where ¯̄σ is the stress tensor, σL is a
constant force per unit area supplied at r = R to the circular cross-section located
at z = L, and we are using the cylindrical system.

The resultant deformation results in a displacement vector that increases linearly
with z, and that, based on the symmetry of the problem, we can write as

~u = (0, uφ(r, z), 0) = (0, R(r)Z(z), 0) = R(r)Z(z)êφ,

where we have separated the (r, z)-dependence of uφ into its r- and z-dependences.
You can safely ignore body forces, such as the gravitational force.

1. Obtain the displacement field in the solid.

2. Obtain the strain tensor.

3. Obtain the stress tensor.

4. What is the total work done by the applied stress?

Solution for a):
Since ~u increases linearly with z, we have that Z(z) = az + b.

In order to find the displacement field, we will use Navier-Cauchy’s equation combined
with the general expression we have for the displacement field:

~f︸︷︷︸
=0

+µ∇2~u+ (λ+ µ)∇(∇ · ~u) = 0 ⇐⇒

⇐⇒ µ(0, ∂rruφ + ∂zzuφ + 1
r
∂ruφ −

1
r2uφ, 0) + (λ+ µ) · 0 = 0 ⇐⇒

⇐⇒ ∂rruφ + ∂zzuφ + 1
r
∂ruφ −

1
r2uφ = 0 ⇐⇒

⇐⇒ R′′(r) + 1
r
R′(r)− 1

r2R(r) = 0 ⇐⇒

r2R′′(r) + rR′(r)−R(r) = 0

If we take as an ansatz R(r) = C · rk, we can clearly see that two independent solutions
for the ODE which form the basis of the solution space are:{

r,
1
r

}
,

and so the general solution for the radial component is:

R(r) = cr + d
1
r
.
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If we impose that when uφ must be bounded near 0, we get that D = 0, and so in reality

R(r) = cr.

We also have that at z = 0, uφ = 0 ∀r since the beam is fixed, so:

0 = uφ(0) = R(r)(0 ·A+B) =⇒ B = 0.

Thus:
uφ = Acrz = Erz,

where E := Ac.

Solution for b):

∇~u =

 0 Ez 0
−Ez 0 0

0 Er 0

 =⇒ ¯̄u = 1
2(∇~u+ (∇~u)T ) = 1

2

0 0 0
0 0 Er
0 Er 0

 .
Solution for c):
We can get the stress tensor from the strain tensor via Hooke’s law:

¯̄σ = 2µ¯̄u+ λ(Tr ¯̄u) ¯̄I,

but since ∇ · ~u = 0, our expression simplifies to:

¯̄σ = 2µ¯̄u =

0 0 0
0 0 Eµr
0 Eµr 0

 .
We are now in good position to impose the boundary condition of the stress tensor at
the end of the beam (z = L):

σLêφ = [¯̄σ · êz]r=R =


 0
µEr

0



r=R

= µERêφ =⇒ E = σL
µR

.

Therefore:
~u =

(
0, σL
µR

rz, 0
)
,

¯̄u = 1
2

0 0 0
0 0 σL

µRr

0 σL
µRr 0

 ,
¯̄σ =

0 0 0
0 0 σL

r
R

0 σL
r
R 0

 .
Solution for d):
We can calculate the elastic energy as:

u = 1
2

¯̄σ : ¯̄u = σ2
L

2µ
r2

R2 .

Given that u = W
V , we can integrate the elastic energy over the entire volume of the

beam to find the work done by the applied stress:

W =
∫
V
u dv = σ2

L

2µR2

∫
r3dφdrdz = σ2

L

2µR2
2φL
4R2 = σ2

LπR
2L

4µ .
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Problem 3. Consider a transverse plane wave, ~u = ~a exp
[
i(~k · ~r − ωt)

]
, propa-

gating through an elastic solid. The solid is homogeneous, isotropic and has Lame
coefficients λ and µ.

1. Show that the propagation of these waves does not involve volume changes.

2. Assume now that the wave propagates along the x̂ direction. Calculate the
stress tensor and justify why we call these waves, shear waves.

3. Now consider a longitudinal wave. Show that ∇× ~u = 0. Hint: You may
consider using the Levi-Civita symbol.

Assume now that the wave propagates along the x̂ direction. Confirm there are
no off-diagonal terms in Cauchy’s strain tensor. Hence, these waves propagate
without shear distorsions; only normal stresses are involved. That’s why we often
refer to them as pressure or compressional waves.

Solution for a):

∇~u = Tr ~̄̄u = i exp
[
i(~k · ~r − ωt)

]
~a · ~k,

as we calculate in the following subsection. But since ~a and ~k are orthogonal, we have
that ∇~u = 0, and therefore the volume of the elastic solid remains invariant.

Solution for b):

¯̄u = 1
2[∇~u+(∇~u)t] = i exp

[
i(~k · ~r − ωt)

]1
2

 2axkx aykx + axky azkx + axkz
axky + aykx 2ayky azky + aykz
axkz + azkx aykz + azky 2azkz

 =

= i exp
[
i(~k · ~r − ωt)

]1
2


kxky
kz

(ax ay az
)

+

axay
az

(kx ky kz
) .

From the previous expression we have that Tr
(¯̄u) = i exp

[
i(~k · ~r − ωt)

]
~k · ~a = 0, so by

using Hooke’s law, we get:

¯̄σ = i exp
[
i(~k · ~r − ωt)

]
2µ


kxky
kz

(ax ay az
)

+

axay
az

(kx ky kz
) .

Due to the fact that ~k = kx̂, so ky = kz = 0, we get:

¯̄σ = i exp
[
i(~k · ~r − ωt)

]
µ

 0 aykx azkx
aykx 0 0
azkx 0 0

 .
Since there are no diagonal terms, there are only shear stresses.

Solution for c):

(∇× ~u)i = εijk∂juk = εijkikjuk = i(~k× ~u),

4



but since for longitudinal waves ~k is parallel to ~u (because of their definition), we have
that ∇× ~u = 0.

Solution for d):

~u = a exp[i(kx− ωt)]x̂.

Therefore:
∇~u = aik exp[i(kx− ωt)]exx,

which means
¯̄u = aik exp[i(kx− ωt)]exx.

Applying Hooke’s law, we have that the only non-zero components of ¯̄σ are:

σxx = (2µ+ λ)uxx,

σyy = σzz = λuxx.

We have confirmed that ¯̄σ is diagonal, which means there are only normal stresses (no
shearing).
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