| \documentclass[a4paper,11pt]{article} |
| |
| \usepackage[portrait,margin=0.5in,top=0.5in,bottom=0.5in]{geometry} |
| \usepackage{amsmath,multicol,siunitx,amsfonts,adjustbox} |
| \usepackage[tiny]{titlesec} |
| \usepackage[version=4]{mhchem} |
| \usepackage[overload]{abraces} |
| |
| \usepackage[utf8]{inputenc} |
| \usepackage[spanish]{babel} |
| \titlespacing{\section}{0pt}{5pt}{0pt} |
| \titlespacing{\subsection}{0pt}{5pt}{0pt} |
| \titlespacing{\subsubsection}{0pt}{5pt}{0pt} |
| \setlength{\parindent}{0pt} |
| \setlength{\parskip}{.5em} |
| \pagenumbering{gobble} |
| \setlength{\columnseprule}{1pt} |
| |
| \newcommand{\forceindent}{\leavevmode{\parindent=1em\indent}} |
| |
| \title{\vspace{-1em} Formulari Física Estadística} |
| \author{Adrià Vilanova Martínez} |
| \date{} |
| |
| \def\dbar{{\mathchar'26\mkern-12mu d}} |
| \everymath{\displaystyle} |
| \DeclareSIUnit{\atmosphere}{atm} |
| \def\hrulefilll{\leavevmode\leaders\hrule height 1.4pt\hfill\kern 0pt} |
| \def\hrulefillll{\leavevmode\leaders\hrule height 2.1pt\hfill\kern 0pt} |
| |
| \begin{document} |
| \maketitle |
| |
| \begin{multicols*}{3} |
| \section{Microcanonical ensemble $(N, V, E)$} |
| |
| \subsection{Introduction} |
| |
| $S = K_b \log \Omega$. |
| |
| \underline{Basic relations:} |
| |
| \begin{adjustbox}{width=\textwidth/3} |
| $\begin{array}{cc} |
| \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_{N, V} & \frac{P}{T} = \left( \frac{\partial S}{\partial V} \right)_{E, N} \\ |
| \mu = - T \left( \frac{\partial S}{\partial N} \right)_{E, V} & C(T) = \frac{\partial E}{\partial T} |
| \end{array}$ |
| \end{adjustbox} |
| |
| \underline{Potentials:} $\begin{cases} |
| F = E - TS, \\ |
| G = F + PV, \\ |
| H = E + PV |
| \end{cases}$ |
| |
| \subsection{Ideal gas} |
| |
| $H(\vec{q}, \vec{p}) = \sum_{i = 1}^N H_i(\vec{q_i}, \vec{p_i}) = \sum_{i = 1}^N \frac{p_i^2}{2m}$ |
| |
| %$H_i(\vec{q_i}, \vec{p_i}) \, \psi_{\vec{n_i}} = \varepsilon_{\vec{n_i}} \, \psi_{\vec{n_i}}$ |
| |
| $PV = \frac{2}{3} E$ (valid for ideal classic and quantum gasses) |
| |
| For a reversible adiabatic process the entropy is constant, and thus: $PV^{\frac{5}{3}} = \text{const.}$ |
| |
| $C_V = \frac{3}{2} N K_B$, $C_P = \frac{5}{2} N K_B$ |
| |
| $\mu = K_B T \log\left( \frac{N \lambda^3}{V} \right)$ |
| |
| $\lambda = \sqrt{\frac{h^2}{2 \pi m K_B T}}$ |
| |
| $\begin{array}{l} |
| S(E, N, V) = \frac{3}{2} N K_B \left( - \log(\lambda) \right. \\ |
| \left. + \frac{2}{3} \log\left( \frac{V}{N} \right) + \frac{5}{3} \right) |
| \end{array}$ |
| |
| \section{Canonical ensemble $(N, V, T)$} |
| |
| \underline{Partition function:} |
| |
| $Z = \sum_{E_i} \Omega(E_i) e^{- \beta E_i}$ |
| |
| $P(E_i) = \frac{1}{Z} \Omega(E_i) e^{- \beta E_i}$ |
| |
| $\langle E \rangle = - \left( \frac{\partial \log Z}{\partial \beta} \right)_{N, V}$ |
| |
| $\sigma_E = \sqrt{K_B T^2 C_v}$ |
| |
| $F = - K_B T \log Z$ |
| |
| \underline{Thermodynamic relations:} |
| |
| $\begin{array}{ll} |
| P = - \left( \frac{\partial F}{\partial V} \right)_{T, N} & S = \left( \frac{\partial F}{\partial T} \right)_{V, N} \\ |
| \mu = \left( \frac{\partial F}{\partial N} \right)_{T, V} |
| \end{array}$ |
| |
| \underline{Identical part.:} $Z(N) = \frac{[Z(1)]^N}{N!}$ |
| |
| \underline{Localized part.:} $Z(N) = [Z(1)]^N$ |
| |
| \underline{Single-particle partition function:} |
| $Z(1) = \frac{1}{h^3} \int e^{- \beta H(\vec{q_i}, \vec{p_i})} d\vec{q_i} d\vec{p_i}$ |
| |
| \underline{Equipartition theorem:} $\langle x_i \cdot \frac{\partial H}{\partial x_j} \rangle = K_B T \delta_{ij}$ |
| |
| $H = \sum_{i = 1}^n a_i x_i^{\eta_i} \Rightarrow E = K_B T \sum_{i = 1}^{6n} \frac{1}{\eta_i}$ |
| |
| \section{Grand canonical ensemble $(\mu, V, T)$} |
| |
| $Q = \sum_{N = 0}^\infty \sum_E \Omega(N, E) e^{- \beta (E - \mu N)}$ |
| |
| $P(E, N) = \frac{1}{Q} \Omega(N, E) e^{- \beta (E - \mu N)}$ |
| |
| \underline{Fugacity:} $z := e^{\beta \mu}$ |
| |
| $Q = \sum_{N = 0}^\infty z^N \sum_E \Omega(N, E) e^{- \beta E} = \sum_{N = 0}^\infty z^N Z(N)$ |
| |
| \begin{adjustbox}{width=\textwidth/3} |
| $\begin{cases} |
| Z(N) = \frac{1}{N!} [Z(1)]^N \implies Q = e^{z Z(1)} \\ |
| Z(N) = [Z(1)]^N \implies Q = \frac{1}{1 - z Z(1)} \\ |
| \end{cases}$ |
| \end{adjustbox} |
| |
| $\alpha = - \beta \mu$ |
| |
| $\langle E \rangle = - \left( \frac{\partial \log Q}{\partial \beta} \right)_{\alpha, V}$ |
| |
| \begin{adjustbox}{width=\textwidth/3} |
| $\sigma_E^2 = \left( \frac{\partial^2 \log Q}{\partial \beta^2} \right)_{\alpha, V} = - \left( \frac{\partial \langle E \rangle}{\partial \beta} \right)_{\alpha, V}$ |
| \end{adjustbox} |
| |
| \begin{adjustbox}{width=\textwidth/3} |
| $\langle N \rangle = - \left( \frac{\partial \log Q}{\partial \alpha} \right)_{\beta, V} = z \left( \frac{\partial \log Q}{\partial z} \right)_{T, V}$ |
| \end{adjustbox} |
| |
| \begin{adjustbox}{width=\textwidth/3} |
| $\sigma_N^2 = \left( \frac{\partial^2 \log Q}{\partial \alpha^2} \right)_{\beta, V} = - \left( \frac{\partial \langle N \rangle}{\partial \alpha} \right)_{\beta, V}$ |
| \end{adjustbox} |
| |
| $\Xi = U - TS - \mu N = - K_B T \log Q$ |
| |
| \underline{Thermodynamic relations:} |
| |
| $\begin{array}{ll} |
| PV = - \Xi & N = - \left( \frac{\partial \Xi}{\partial \mu} \right)_{T, V} \\ |
| S = - \left( \frac{\partial \Xi}{\partial T} \right)_{V, \mu} |
| \end{array}$ |
| |
| (isolating $\mu$ from the first 2 eqs. we get the eq. of state) |
| |
| \section{Quantum statistical mechanics} |
| |
| $E_k = \sum_i n_i \varepsilon_i$, $Z = \sum_k e^{- \beta E_k}$ |
| |
| $Z = \sum_{\{ n_i \}} f(\{ n_i \}) e^{- \beta E_k}$ |
| |
| Distinguishable: $g(\{ n_i \}) = \frac{N!}{n_1! n_2! \cdots n_N!}$ |
| |
| Indistinguishable: $g(\{ n_i \}) = 1$ |
| |
| $Q = \prod_i \sum_{n_i = 0}^{n_{i, max}} (z e^{- \beta \varepsilon_i})^{n_i}$ |
| |
| \section{Miscelanea} |
| |
| \underline{Vol($d$-sphere):} |
| $V_d(R) = \frac{\pi^{\frac{d}{2}} R^d}{\Gamma\left( 1 + \frac{d}{2} \right)}$ |
| |
| \underline{Stirling:} $\log n! \approx n \log n - n$ |
| |
| $\sum_{n = 0}^N x^n = \frac{x^{N + 1} - 1}{x - 1}$ |
| |
| \end{multicols*} |
| \end{document} |